GROUP 13A

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE>

CONTENTS

GENERAL DESCRIPTION	13A-3
MULTIPORT FUEL INJECTION (MFI)	
DIAGNOSIS	13A-6
TROUBLESHOOTING STRATEGY	13A-6
DIAGNOSTIC FUNCTION	13A-6
FAIL-SAFE FUNCTION REFERENCE	
TABLE	13A-39
DIAGNOSTIC TROUBLE CODE CHART	13A-41
SYMPTOM CHART	13A-46
DIAGNOSTIC TROUBLE CODE	
PROCEDURES	13A-50
SYMPTOM PROCEDURES	13A-1011
DATA LIST REFERENCE TABLE	13A-1147
GENERAL SCAN TOOL (GST) MODE 01	
REFERENCE TABLE	13A-1158
ACTUATOR TEST REFERENCE TABLE.	13A-1169
CHECK AT THE ENGINE CONTROL MODI	JLE
	130 1171
	13/1-11/1
OSCILLOSCOPE	13A-1179

SPECIAL TOOLS..... 13A-1189

ON-VEHICLE SERVICE 13A-1191
COMPONENT LOCATION 13A-1191
THROTTLE BODY (THROTTLE VALVE
AREA) CLEANING 13A-1197
FUEL PRESSURE TEST 13A-1197
FUEL PUMP CONNECTOR DISCONNECTION (HOW TO REDUCE PRESSURIZED FUEL
LINES) 13A-1200
FUEL PUMP OPERATION CHECK 13A-1200
MULTIPORT FUEL INJECTION (MFI) RELAY AND THROTTLE ACTUATOR CONTROL MOTOR RELAY CONTINUITY
CHECK
FUEL PUMP RELAY CONTINUITY CHECK 13A-1203
INTAKE AIR TEMPERATURE SENSOR CHECK
ENGINE COOLANT TEMPERATURE SENSOR CHECK
HEATED OXYGEN SENSOR CHECK 13A-1204
INJECTOR CHECK
THROTTLE ACTUATOR CONTROL MOTOR CHECK 13A-1207
ENGINE OIL CONTROL VALVE CHECK 13A-1208
EVAPORATIVE EMISSION PURGE SOLENOID CHECK 13A-1208
SOLENOID CHECK
EGR VALVE CHECK

Continued on next page

13A-2

INJECTOR 13A-1209		
REMOVAL AND INSTALLATION 13A-1209		
THROTTLE BODY ASSEMBLY 13A-1212		
REMOVAL AND INSTALLATION 13A-1212		
ENGINE CONTROL MODULE (ECM)		

FASTENER TIGHTENING	
SPECIFICATIONS	13A-1215
GENERAL SPECIFICATIONS	13A-1215
SERVICE SPECIFICATIONS	13A-1217
SEALANT AND ADHESIVE	13A-1217

M1131000102246

GENERAL DESCRIPTION

The Multiport Fuel Injection System consists of sensors, actuators and the engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T>. The sensors detect the engine condition. The ECM <M/T> or the PCM <A/T> controls the system based on signals from these sensors. The actuators work under the control of the ECM <M/T> or the PCM <A/T>. The ECM <M/T> or the PCM <A/T> carries out activities such as fuel injection control, throttle valve opening control, idle air control, and ignition timing control. In addition, the ECM <M/T> or the PCM <A/T> has several diagnostic test modes which simplify troubleshooting when a problem develops.

FUEL INJECTION CONTROL

The ECM <M/T> or the PCM <A/T> controls injector drive times and injection timing to supply the optimum air/fuel mixture to the engine according to the continually-changing engine operation conditions. A single injector is mounted at the intake port of each cylinder. The fuel pump supplies pressurized fuel from the fuel tank to the fuel injectors. The fuel pressure regulator controls the fuel pressure. Thus, the regulated fuel is distributed to each injector. Fuel is normally injected for each cylinder every two rotations of the crankshaft. The firing order is 1-3-4-2. Each cylinder has a dedicated fuel injector. This is called "multiport". The ECM <M/T> or the PCM <A/T> provides a richer air/fuel mixture by carrying out "open-loop" control when the engine is cold or running under high load conditions. Thus, engine performance is maintained. In addition, when the engine is under normal operating temperature after warming-up, the ECM <M/T> or the PCM <A/T> controls the air/fuel mixture according to the heated oxygen sensor signal. This control is a "closed-loop" control. The closed-loop control achieves the theoretical air/fuel mixture ratio where the catalytic converter can obtain the maximum cleaning performance.

THROTTLE VALVE OPENING CONTROL

This system electrically controls the opening of the throttle valve. The ECM <M/T> or the PCM <A/T> detects the amount of travel of the accelerator pedal via the accelerator pedal position sensor, and controls the actuation of the throttle actuator control motor, which is mounted on the throttle body, in order to attain the target throttle valve opening that has been predetermined in accordance with driving conditions.

IDLE AIR CONTROL

The idle speed is kept at the optimum speed by controlling the amount of air that passes through the throttle valve in accordance with changes in idling conditions and engine load during idling. The ECM <M/T> or the PCM <A/T> drives the throttle actuator control motor to keep the engine running at the pre-set idle target speed in accordance with the engine coolant temperature and A/C and other electrical load. In addition, when the air conditioning switch is turned off and on while the engine is idling, the throttle actuator control motor adjusts the throttle valve pass-through air amount according to the engine load conditions to avoid fluctuations in the engine speed.

IGNITION TIMING CONTROL

The ignition power transistor located in the ignition primary circuit turns on and off to control primary current flow to the ignition coil. This maintains ignition timing at an optimum level regardless of various engine operating conditions. The ECM <M/T> or the PCM <A/T> determines the ignition timing according to engine speed, intake air volume, engine coolant temperature, and atmospheric pressure.

DIAGNOSTIC TEST MODE

- When a fault is detected in any of the sensors or actuators related to emission control, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates to warn the driver.
- When a fault is detected in one of the sensors or actuators, a diagnostic trouble code corresponding to the fault is stored in the ECM <M/T> or the PCM <A/T>.
- The RAM data inside the ECM <M/T> or the PCM <A/T> that is related to the sensors and actuators can be read with the scan tool. In addition, the actuators can be controlled by the scan tool MB991958 (MUT-III sub assembly) under certain circumstances.

OTHER CONTROL FUNCTIONS

Fuel Pump Control

• Turns on the fuel pump relay so that current is supplied to the fuel pump while the engine is cranking or running.

A/C Compressor Clutch Relay Control

• Turns on and off the A/C compressor clutch.

Engine Oil Control Valve Control

 The ECM <M/T> or the PCM <A/T> effects duty cycle control on the engine oil control valve, in accordance with the engine speed. This regulates the supply of engine oil to the intake rocker shaft, which switches the cams.

Fan Relay Control

• The radiator fan and condenser fan speeds are controlled in response to the engine coolant temperature and vehicle speed.

Generator Output Current Control

• Prevents generator output current from increasing suddenly and idle speed from dropping at times such as when the headlights are turned on.

Evaporative Emission Purge Control

 (Refer to GROUP 17, Emission Control System – Evaporative Emission System –General Information. P.17-98)

EGR Control

 (Refer to GROUP 17, Emission Control System – Exhaust Gas Recirculation (EGR) System –General Information. P.17-104)

MULTIPORT FUEL INJECTION (MFI) SYSTEM DIAGRAM

NOTE: For the vacuum hose routing, refer to GROUP 17, Vacuum Hoses P.17-92.

MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

TROUBLESHOOTING STRATEGY

NOTE: If a DTC is erased, its "freeze frame" data will be also erased and the system readiness test status will be reset. Store the "freeze frame" data before erasing the DTC.

Use these steps to plan your diagnostic strategy. If you follow them carefully, you will be sure to have exhausted most of the possible ways to find an MFI fault.

- 1. Gather as much information as possible about the complaint from the customer.
- 2. Verify that the condition described by the customer exists.
- 3. Check the vehicle for any MFI Diagnostic Trouble Code (DTC).
- If you cannot verify the condition and there are no DTCs, the malfunction is intermittent. For information on how to cope with intermittent malfunctions, refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points – How to Cope with Intermittent Malfunctions P.00-14.
- 5. If you can verify the condition but there are no DTCs, or the system cannot communicate with the scan tool, refer to the trouble symptom classification table.

DIAGNOSTIC FUNCTION

6. If there is a DTC, record the number of the code, then erase the code from the memory using the scan tool.

- 7. Reconfirm the malfunction symptom and carry out a test drive with the drive cycle pattern.
- 8. If DTC is set again, carry out an inspection with appropriate diagnostic trouble code procedures.
- If DTC is not set again, the malfunction is intermittent. For information on how to cope with intermittent malfunctions, refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- 10.After repairs are completed, conduct a road test duplicating the complaint set conditions to confirm the malfunction has been corrected.

NOTE: If the engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T> is replaced, Immobilizer Encrypted Code Registration should be carried out, Refer to GROUP 54A, Ignition Switch –On-vehicle Service –Immobilizer Encrypted Code Registration P.54A-42.

M1131155501226

MALFUNCTION INDICATOR LAMP (SERVICE ENGINE SOON OR CHECK ENGINE LAMP)

Among the on-board diagnostic items, Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates to notify the driver of an emission control malfunction. However, when an irregular signal returns to normal and the powertrain control module judges that it has returned to normal, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) will switch off.

Immediately after the ignition switch is turned on, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) is lit for 20 seconds to indicate that the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) operates normally.

TSB Revision

M1131150001453

Items Indicated by the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp)

DTC	ITEM			
_	Engine control module (ECM) <m t=""> or powertrain control module (PCM) malfunction</m>			
P0031	Cylinder 1, 4 heated oxygen sensor heater (front) control circuit low			
P0032	Cylinder 1, 4 heated oxygen sensor heater (front) control circuit high			
P0037	Cylinder 1, 4 heated oxygen sensor heater (rear) control circuit low			
P0038	Cylinder 1, 4 heated oxygen sensor heater (rear) control circuit high			
P0051	Cylinder 2, 3 heated oxygen sensor heater (front) control circuit low			
P0052	Cylinder 2, 3 heated oxygen sensor heater (front) control circuit high			
P0057	Cylinder 2, 3 heated oxygen sensor heater (rear) control circuit low			
P0058	Cylinder 2, 3 heated oxygen sensor heater (rear) control circuit high			
P0069	Abnormal correlation between manifold absolute pressure sensor and barometric pressure sensor			
P0101*	Mass airflow circuit range/performance problem			
P0102*	Mass airflow circuit low input			
P0103*	Mass airflow circuit high input			
P0106	Manifold absolute pressure circuit range/performance problem			
P0107	Manifold absolute pressure circuit low input			
P0108	Manifold absolute pressure circuit high input			
P0111*	Intake air temperature circuit range/performance problem			
P0112*	Intake air temperature circuit low input			
P0113*	Intake air temperature circuit high input			
P0116*	Engine coolant temperature circuit range/performance problem			
P0117*	Engine coolant temperature circuit low input			
P0118*	Engine coolant temperature circuit high input			
P0122*	Throttle position sensor (main) circuit low input			
P0123*	Throttle position sensor (main) circuit high input			
P0125*	Insufficient coolant temperature for closed loop fuel control			
P0128	Coolant thermostat (Coolant temperature below thermostat regulating temperature)			
P0131	Cylinder 1, 4 heated oxygen sensor (front) circuit low voltage			
P0132	Cylinder 1, 4 heated oxygen sensor (front) circuit high voltage			
P0133	Cylinder 1, 4 heated oxygen sensor (front) circuit slow response			
P0134*	Cylinder 1, 4 heated oxygen sensor (front) circuit no activity detected			
P0137	Cylinder 1, 4 heated oxygen sensor (rear) circuit low voltage			
P0138	Cylinder 1, 4 heated oxygen sensor (rear) circuit high voltage			
P0139	Cylinder 1, 4 heated oxygen sensor (rear) circuit slow response			
P0140	Cylinder 1, 4 heated oxygen sensor (rear) circuit no activity detected			
P0151	Cylinder 2, 3 heated oxygen sensor (front) circuit low voltage			
P0152	Cylinder 2, 3 heated oxygen sensor (front) circuit high voltage			
P0153	Cylinder 2, 3 heated oxygen sensor (front) circuit slow response			

DTC	ITEM
P0154*	Cylinder 2, 3 heated oxygen sensor (front) circuit no activity detected
P0157	Cylinder 2, 3 heated oxygen sensor (rear) circuit low voltage
P0158	Cylinder 2, 3 heated oxygen sensor (rear) circuit high voltage
P0159	Cylinder 2, 3 heated oxygen sensor (rear) circuit slow response
P0160	Cylinder 2, 3 heated oxygen sensor (rear) circuit no activity detected
P0171	System too lean (cylinder 1, 4)
P0172	System too rich (cylinder 1, 4)
P0174	System too lean (cylinder 2, 3)
P0175	System too rich (cylinder 2, 3)
P0181	Fuel tank temperature sensor circuit range/performance
P0182	Fuel tank temperature sensor circuit low input
P0183	Fuel tank temperature sensor circuit high input
P0201	Injector circuit-cylinder 1
P0202	Injector circuit-cylinder 2
P0203	Injector circuit-cylinder 3
P0204	Injector circuit-cylinder 4
P0222*	Throttle position sensor (sub) circuit low input
P0223*	Throttle position sensor (sub) circuit high input
P0300	Random/multiple cylinder misfire detected
P0301	Cylinder 1 misfire detected
P0302	Cylinder 2 misfire detected
P0303	Cylinder 3 misfire detected
P0304	Cylinder 4 misfire detected
P0335*	Crankshaft position sensor circuit
P0340*	Camshaft position sensor circuit
P0401	Exhaust gas recirculation flow insufficient detected
P0403	Exhaust gas recirculation control circuit
P0421	Warm up catalyst efficiency below threshold (cylinder 1, 4)
P0431	Warm up catalyst efficiency below threshold (cylinder 2, 3)
P0441	Evaporative emission control system incorrect purge flow
P0442	Evaporative emission control system leak detected (small leak)
P0443	Evaporative emission control system purge control valve circuit
P0446	Evaporative emission control system vent control circuit
P0450	Evaporative emission control system pressure sensor malfunction
P0451	Evaporative emission control system pressure sensor range/performance
P0452	Evaporative emission control system pressure sensor low input
P0453	Evaporative emission control system pressure sensor high input
P0455	Evaporative emission control system leak detected (gross leak)
P0456	Evaporative emission control system leak detected (very small leak)
P0461	Fuel level sensor (main) circuit range/performance

DTC	ITEM		
P0462	Fuel level sensor circuit low input		
P0463	Fuel level sensor circuit high input		
P0500*	Vehicle speed sensor malfunction <m t=""></m>		
P0506	Idle control system RPM lower than expected		
P0507	Idle control system RPM higher than expected		
P0551	Power steering pressure switch circuit range/performance		
P0554	Power steering pressure switch circuit intermittent		
P0603*	EEPROM malfunction		
P0606*	Engine control module <m t=""> or powertrain control module main processor malfunction</m>		
P0630*	VIN malfunction		
P0638*	Throttle actuator control motor circuit range/performance		
P0642*	Throttle position sensor power supply		
P0657*	Throttle actuator control motor relay circuit malfunction		
P0705	Transmission range switch circuit malfunction (RPNDL input) 		
P0712*	Transmission fluid temperature sensor circuit low input 		
P0713*	Transmission fluid temperature sensor circuit high input 		
P0715*	Input/Turbine speed sensor circuit 		
P0720*	Output speed sensor circuit 		
P0731*	Gear 1 incorrect ratio 		
P0732*	Gear 2 incorrect ratio 		
P0733*	Gear 3 incorrect ratio 		
P0734*	Gear 4 incorrect ratio 		
P0736*	Gear R incorrect ratio 		
P0741	Torque converter clutch circuit performance or stuck off 		
P0742	Torque converter clutch circuit stuck on 		
P0743*	Torque converter clutch circuit electrical 		
P0753*	Shift solenoid "A" electrical 		
P0758*	Shift solenoid "B" electrical 		
P0763*	Shift solenoid "C" electrical 		
P0768*	Shift solenoid "D" electrical 		
P1020	Mitsubishi innovative valve timing and lift electronic control system (MIVEC) performance problem		
P1021	Engine oil control valve circuit		
P1602*	Communication malfunction (between ECM <m t=""> or PCM main processor and system LSI)</m>		
P1603*	Battery backup line malfunction		
P1751*	A/T control relay malfunction 		
P2066	Fuel level sensor (sub) circuit range/performance		
P2100*	Throttle actuator control motor circuit (open)		
P2101*	Throttle actuator control motor magneto malfunction		

DTC	ITEM
P2122*	Accelerator pedal position sensor (main) circuit low input
P2123*	Accelerator pedal position sensor (main) circuit high input
P2127*	Accelerator pedal position sensor (sub) circuit low input
P2128*	Accelerator pedal position sensor (sub) circuit high input
P2135*	Throttle position sensor (main and sub) range/performance problem
P2138*	Accelerator pedal position sensor (main and sub) range/performance problem
P2195	Cylinder 1, 4 heated oxygen sensor (front) inactive
P2197	Cylinder 2, 3 heated oxygen sensor (front) inactive
P2228*	Barometric pressure circuit low input
P2229*	Barometric pressure circuit high input
P2252	Heated oxygen sensor offset circuit low voltage
P2253	Heated oxygen sensor offset circuit high voltage
U1108*	Combination meter time-out

NOTE: If the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates because of a malfunction of the engine control module (ECM)
(A/T> or the powertrain control module (PCM)
(A/T>, communication between the scan tool MB991958 (MUT-III sub assembly) and the ECM
M/T> or the PCM
A/T> is impossible. In this case, the diagnostic trouble code cannot be read.

NOTE: After the ECM <M/T> or the PCM <A/T> has detected a malfunction, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates when the engine is next turned on and the same malfunction is re-detected. However, for items marked with a "*" in the DTC NO. column, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates only on the first detection of the malfunction.

NOTE: After the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) illuminates, it will be switched off under the following conditions.

- When the ECM <M/T> or the PCM <A/T> monitored the powertrain malfunction three times* and met set condition requirements, it detected no malfunction. *: In this case, "one time" indicates from engine start to next engine start.
- For misfiring or a fuel trim malfunction, when driving conditions (engine speed, engine coolant temperature, etc.) are similar to those when the malfunction was first recorded.

NOTE: Sensor 1 indicates the sensor mounted at a position closest to the engine, and sensor 2 indicates the sensor mounted at the position second closest to the engine.

HOW TO CONNECT THE SCAN TOOL (MUT-III)

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Ensure that the ignition switch is at the "LOCK" (OFF) position.
- 2. Start up the personal computer.
- 3. Connect special tool MB991827 to special tool MB991824 and the personal computer.
- 4. Connect special tool MB991910 to special tool MB991824.
- 5. Connect special tool MB991910 to the data link connector.
- 6. Turn the power switch of special tool MB991824 to the "ON" position.

NOTE: When the special tool MB991824 is energized, special tool MB991824 indicator light will be illuminated in a green color.

7. Start the MUT-III system on the personal computer. NOTE: Disconnecting the scan tool MB991958 is the reverse of the connecting sequence, making sure that the ignition switch is at the "LOCK" (OFF) position.

HOW TO READ AND ERASE DIAGNOSTIC TROUBLE CODES.

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

NOTE: If the battery voltage is low, diagnostic trouble codes will not be set. Check the battery if scan tool MB991958 does not display.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "Interactive Diagnosis" from the start-up screen.
- 4. Select "System select."
- 5. Choose "MFI" from the "POWERTRAIN" tab.
- 6. Select "MITSUBISHI."
- 7. Select "Diagnostic Trouble Code"
- 8. If a DTC is set, it is shown.
- 9. Choose "Erase DTCs" to erase the DTC.

HOW TO READ DATA LIST

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "Interactive Diagnosis" from the start-up screen.
- 4. Select "System select."
- 5. Choose "MFI" from the "POWERTRAIN" tab.
- 6. Select "MITSUBISHI."
- 7. Select "Data List."
- 8. Choose an appropriate item and select the "OK" button.

HOW TO PERFORM ACTUATOR TEST

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "Interactive Diagnosis" from the start-up screen.
- 4. Select "System select."
- 5. Choose "MFI" from the "POWERTRAIN" tab.
- 6. Select "MITSUBISHI."
- 7. Select "Actuator Test."
- 8. Choose an appropriate item and select the "OK" button.

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- 3. Select "CAN bus diagnosis" from the start-up screen.
- 4. When the vehicle information is displayed, confirm that it matches the vehicle whose CAN bus lines will be diagnosed.
 - If they matches, go to step 8.
- If not, go to step 5.
- 5. Select the "view vehicle information" button.
- 6. Enter the vehicle information and select the "OK" button.
- When the vehicle information is displayed, confirm again that it matches the vehicle whose CAN bus lines will be diagnosed.
- If they matches, go to step 8.
- If not, go to step 5.
- 8. Select the "OK" button.
- When the optional equipment screen is displayed, choose the one which the vehicle is fitted with, and then select the "OK" button.

PROVISIONAL DTCs [OBD-II Test Mode - Results (Mode 7)]

The general scan tool will display the Provisional DTCs reported by ECM <M/T> or PCM <A/T> if the ECM <M/T> or the PCM <A/T> detects some malfunction for "Misfire", "Fuel System" and "Comprehensive" monitoring during a SINGLE Driving Cycle. The intended use of this data is to assist the technician after a vehicle repair, and after clearing diagnostic information, by reporting test result after a SINGLE Driving Cycle. Note that the test results reported by this mode do not necessarily indicate a faulty component/system. If test results indicate a failure after ADDITIONAL (consecutive) driving, then the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) will be illuminated and a DTC will set.

MODE 6 REFERENCE TABLE

The engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T> monitors the condition of emission control system.

By selecting MODE 6 using scan tool, Test Result and Limit Value (minimum) *1 or (maximum) *2 about the main items of emission control system which ECM/PCM monitors can be confirmed. The value at the last monitoring is output by ECM/PCM as a test result.

ON-BOARD DIAGNOSTIC MONITOR ID	STANDARDIZED/ MANUFACTURER DEFINED TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
01	81	Oxygen Sensor Monitor Bank 1 – Sensor 1 Rich/Lean Switching frequency	ECM/PCM monitors the deteriorated condition of the cylinder 1, 4 heated oxygen sensor (front) by checking the rich/lean switching frequency of the cylinder 1, 4 heated oxygen sensor (front).	× 1count
02	82	Oxygen Sensor Monitor Bank 1 – Sensor 2 Output Voltage change	ECM/PCM checks the output voltage of the cylinder 1, 4 heated oxygen sensor (rear) in order to monitor whether the cylinder 1, 4 heated oxygen sensor (rear) output is stuck.	× 0.122 mV
	05	Oxygen Sensor Monitor Bank 1 – Sensor 2 Rich To Lean Sensor Switch Time	ECM/PCM checks the rich to lean switching time of the cylinder 1, 4 heated oxygen sensor (rear) in order to monitor the response of the cylinder 1, 4 heated oxygen sensor (rear).	× 1 msec
05	81	Oxygen Sensor Monitor Bank 2 – Sensor 1 Rich/Lean Switching frequency	ECM/PCM monitors the deteriorated condition of the cylinder 2, 3 heated oxygen sensor (front) by checking the rich/lean switching frequency of the cylinder 2, 3 heated oxygen sensor (front).	× 1count

ON-BOARD DIAGNOSTIC MONITOR ID	STANDARDIZED/ MANUFACTURER DEFINED TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
06	82	Oxygen Sensor Monitor Bank 2 – Sensor 2 Output Voltage change	ECM/PCM checks the output voltage of the cylinder 2, 3 heated oxygen sensor (rear) in order to monitor whether the cylinder 2, 3 heated oxygen sensor (rear) output is stuck.	× 0.122 mV
	05	Oxygen Sensor Monitor Bank 2 – Sensor 2 Rich To Lean Sensor Switch Time	ECM/PCM checks the rich to lean switching time of the cylinder 2, 3 heated oxygen sensor (rear) in order to monitor the response of the cylinder 2, 3 heated oxygen sensor (rear).	× 1 msec
21	83	Catalyst Monitor Bank 1 Frequency ratio between Front- and Rear-Oxygen Sensors	ECM/PCM monitors the deterioration of catalyst at cylinder 1, 4 side by the output frequency ratio between cylinder 1, 4 heated oxygen sensor (front) and cylinder 1, 4 heated oxygen sensor (rear).	× 0.039
22	83	Catalyst Monitor Bank 2 Frequency ratio between Front- and Rear-Oxygen Sensors	ECM/PCM monitors the deterioration of catalyst at cylinder 2, 3 side by the output frequency ratio between cylinder 2, 3 heated oxygen sensor (front) and cylinder 2, 3 heated oxygen sensor (rear).	× 0.039
31	84	EGR Monitor Difference of manifold pressure before and after EGR activation	ECM/PCM monitors the operation of EGR system by the pressure difference of intake manifold between before and after introduction of EGR using the manifold absolute pressure sensor.	× 0.0117 kPa

TSB Revision	
--------------	--

ON-BOARD DIAGNOSTIC MONITOR ID	STANDARDIZED/ MANUFACTURER DEFINED TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
39	85	EVAP Monitor (Cap off) Pressure drop during de-pressurizing	ECM/PCM monitors the leak of fuel evaporation gas by checking whether the pressure can be reduced (the amount of pressure reduction) using the fuel tank differential pressure sensor after sealing the fuel tank and the fuel line.	× 0.0117 kPa
3B	85	EVAP Monitor (0.040") Pressure rise during airtight condition	After ECM/PCM vacuumizes the fuel tank and the fuel line and then the specified time is passed, ECM/PCM monitors the leak of fuel evaporation gas through the fuel tank differential pressure sensor to check the reduction of vacuum in the fuel tank.	× 0.0117 kPa
3C	85	EVAP Monitor (0.020") Pressure rise during airtight condition	After ECM/PCM vacuumizes the fuel tank and the fuel line and then the specified time is passed, ECM/PCM monitors the leak of fuel evaporation gas through the fuel tank differential pressure sensor to check the reduction of vacuum in the fuel tank.	× 0.0117 kPa

ON-BOARD DIAGNOSTIC MONITOR ID	STANDARDIZED/ MANUFACTURER DEFINED TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
A1	0B	Mis-Fire General Data EWMA Misfire Counts For Last 10 Driving Cycles	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles.	× 1count
	0C	Mis-Fire General Data Misfire Counts For Last/Current Driving Cycle	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. Misfire counts for last/current driving cycle.	× 1count
A2	0B	Mis-Fire Cylinder 1 Data EWMA Misfire Counts For Last 10 Driving Cycles	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles.	× 1count
	0C	Mis-Fire Cylinder 1 Data Misfire Counts For Last/Current Driving Cycle	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. Misfire counts for last/current driving cycle.	× 1count
A3	0B	Mis-Fire Cylinder 2 Data EWMA Misfire Counts For Last 10 Driving Cycles	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles.	× 1count
	0C	Mis-Fire Cylinder 2 Data Misfire Counts For Last/Current Driving Cycle	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. Misfire counts for last/current driving cycle.	× 1count

TSB Revision

r				
ON-BOARD DIAGNOSTIC MONITOR ID	STANDARDIZED/ MANUFACTURER DEFINED TEST ID	MONITORING ITEM	SIMPLE TECHNICAL DESCRIPTION	CONVERSION COEFFICIENT IN USING GENERAL SCAN TOOL
A4	0B	Mis-Fire Cylinder 3 Data EWMA Misfire Counts For Last 10 Driving Cycles.	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles.	× 1count
	0C	Mis-Fire Cylinder 3 Data Misfire Counts For Last/Current Driving Cycle	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. Misfire counts for last/current driving cycle.	× 1count
A5	0B	Mis-Fire Cylinder 4 Data EWMA Misfire Counts For Last 10 Driving Cycles	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles.	× 1count
	0C	Mis-Fire Cylinder 4 Data Misfire Counts For Last/Current Driving Cycle	ECM/PCM monitors angular acceleration of crankshaft and detect misfire. Misfire counts for last/current driving cycle.	× 1count

NOTE: *1: Minimum value: The test fails if test value is less than this value.

NOTE: *2: Maximum value: The test fails if test value is greater than this value.

NOTE: When not finishing the monitor of the driving cycle for the request of On-Board Monitoring Test Request, the ECM/PCM outputs the stored latest monitor test result.

NOTE: When the monitored test results are erased by the battery disconnection and so on, the ECM/PCM outputs the values in hexadecimal of "0000" or "FFFF", otherwise it outputs abnormal values and so on. In case of this, the ECM/PCM outputs are handled as invalid-values. When the first monitor (Readiness Status) is completed after this, the ECM/PCM outputs the valid-values.

NOTE: "Test Limit Type & Component ID byte" output from the ECM/PCM is given in hexadecimal of "00" or "80". "00" means the maximum value and "80" means the minimum value.

TSB	Revision	
-----	----------	--

DATA LINK
CONNECTORMB991910MB991824Image: MB991827

DIAGNOSTIC BY DIAGNOSTIC TEST MODE II (INCREASED SENSITIVITY)

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

NOTE: When mode II is selected with MB991958, the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) will light when the engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T> first detects the trouble (Note that this is only for emission-related trouble). At the same time, the relevant diagnostic trouble codes will be registered. In respect to the comprehensive component electrical faults (opens/shorts), the time for the diagnostic trouble code to be registered after the fault occurrence is four seconds -one second. Therefore, the confirmation of the trouble symptom and the confirmation after completing repairs can be reduced. To return to the normal mode I after mode II has been selected once, the ignition switch must be turned "OFF" once or mode I must be reselected with the scan tool MB991958. The diagnostic trouble code, system readiness test status and freeze frame data, etc., will be erased when mode I is returned to, so record these before returning to mode I.

- 1. Connect scan tool MB991958 to the data link connector.
- 2. Turn the ignition switch to the "ON" position.
- Change the diagnostic test mode of the powertrain control module to DIAGNOSTIC TEST MODE II (INCREASED SENSITIVITY).
- 4. Road test the vehicle.
- 5. Read the diagnostic trouble code and repair the malfunctioning part.
- 6. Turn the ignition switch to the "LOCK" (OFF) position.
- 7. Disconnect scan tool MB991958 from the data link connector.

TSB Revision

AK500051AB

ON-BOARD DIAGNOSTICS

The engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T> monitors the input/output signals (some signals all the time and others under specified conditions) of the ECM <M/T> or the PCM <A/T>. When a malfunction continues for a specified time or longer after the irregular signal is initially monitored, the ECM <M/T> or the PCM <A/T> judges that a malfunction has occurred. After the ECM <M/T> or the PCM <A/T> first detects a malfunction, a diagnostic trouble code is recorded when the engine is restarted and the same malfunction is re-detected. However, for items marked with a "*", a diagnostic trouble code is recorded on the first detection of the malfunction. There are 136 diagnostic items. The diagnostic results can be read out with a scan tool. Since memorization of the diagnostic trouble codes is backed up directly by the battery, the diagnostic results are memorized even if the ignition key is turned off. The diagnostic trouble codes will, however, be erased when the battery terminal or the ECM <M/T> or the PCM <A/T> connector is disconnected. In addition, the diagnostic trouble code can also be erased by turning the ignition switch to ON and sending the diagnostic trouble code erase signal from scan tool MB991958 to the ECM <M/T> or the PCM <A/T>.

NOTE: If the sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code is memorized. In this case, send the diagnostic trouble code erase signal to the ECM <M/T> or the PCM <A/T> in order to erase the diagnostic memory. The 136 diagnostic items are all indicated sequentially from the smallest code number. The ECM <M/T> or the PCM <A/T> records the engine operating condition when the diagnostic trouble code is set. This data is called "Freeze-frame" data. This data can be read by using the scan tool, and can then be used in simulation tests for troubleshooting. Data items are as follows:

NOTE: If the ECM <M/T> or the PCM <A/T> detects multiple malfunctions, the ECM <M/T> or the PCM <A/T> stores the "Freeze-frame" data for only the first item that was detected. However, if the ECM <M/T> or the PCM <A/T> detects a misfire or a fuel system malfunction, the ECM <M/T> or the PCM <A/T> stores the data by giving priority to the misfire or fuel system malfunction, regardless of the order in which the malfunction was detected.

NOTE: As for Diagnostic trouble code P1603, "Freeze frame" data is not memorized.

13A-22

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

COMMON EXAMPLE of GENERAL SCAN TOOL DISPLAY	PARAMETER IDENTIFICATION (PID)	DESCRIPTION	UNIT or STATE
DTCFRZF	02	DTC that caused required freeze frame data storage	Pxxxx, Cxxxx, Bxxxx, Uxxxx
FUELSYS 1	03	Fuel system 1 status	 OL (Open Loop) CL (Closed Loop) OL-Drive (Open Loop due to driving condition) OL-Fault (Open Loop due to detected system fault) CL-Fault (Closed Loop, but fault with at least one oxygen sensor)
FUELSYS 2		Fuel system 2 status	 OL (Open Loop) CL (Closed Loop) OL-Drive (Open Loop due to driving condition) OL-Fault (Open Loop due to detected system fault) CL-Fault (Closed Loop, but fault with at least one oxygen sensor)
LOAD_PCT	04	Calculated LOAD Value	%
ECT	05	Engine Coolant Temperature	° C (° F)
SHRTFT 1	06	Short Term Fuel Trim – Bank 1	%
LONGFT 1	07	Long Term Fuel Trim – Bank 1	%
SHRTFT 2	08	Short Term Fuel Trim – Bank 2	%
LONGFT 2	09	Long Term Fuel Trim – Bank 2	%
MAP	0B	Intake Manifold Absolute Pressure	kPa (inHg)
RPM	0C	Engine RPM	min ⁻¹
VSS	0D	Vehicle Speed Sensor	km/h (mph)
SPARKADV	0E	Ignition Timing Advance for #1 Cylinder	0
IAT	0F	Intake Air Temperature	°C (°F)
MAF	10	Air Flow Rate from Mass Air Flow Sensor	g/s (lb/min)
TP	11	Absolute Throttle Position	%
RUNTM	1F	Time Since Engine Start	sec.
EGR_PCT	2C	Commanded EGR	%
EVAP_PCT	2E	Commanded Evaporative Purge	%
FLI	2F	Fuel Level Input	%
BARO	33	Barometric Pressure	kPa (inHg)

COMMON EXAMPLE of GENERAL SCAN TOOL DISPLAY	PARAMETER IDENTIFICATION (PID)	DESCRIPTION	UNIT or STATE
VPWR	42	Control module voltage	V
LOAD_ABS	43	Absolute Load Value	%
EQ_RAT	44	Commanded Equivalence Ratio	-
TP_R	45	Relative Throttle Position	%
AAT	46	Ambient air temperature	° C (° F)
TP_B	47	Absolute Throttle Position B	%
APP_D	49	Accelerator Pedal Position D	%
APP_E	4A	Accelerator Pedal Position E	%
TAC_PCT	4C	Commanded Throttle Actuator Control	%

OBD- II DRIVE CYCLE

All kinds of diagnostic trouble codes (DTCs) can be monitored by carrying out a short drive according to the following 22 drive cycle patterns. In other words, doing such a drive regenerates any kind of trouble which involves illuminating the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) and verifies the repair procedure has eliminated [the trouble the Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) is no longer illuminated].

Two technicians should always be in the vehicle when carrying out a test.

NOTE: Check that the diagnosis trouble code (DTC) is not output before driving the OBD-II drive cycle. Erase the DTC if it has been output.

NOTE: Drive cycle patterns are not established for Vehicle speed sensor monitor (DTC P0500), Power steering pressure switch monitor (P0551), and Fuel level sensor monitor (DTC P0461, P2066). Please reference the MUT data list to judge whether these monitor items are normal.

DRIVE CYCLE PATTERN LIST

MONITOR ITEM	DIAGNOSTIC TROUBLE CODE (DTC)	PATTERN
Heated oxygen sensor (front) monitor <readiness item="" test=""></readiness>	P0133, P0153	1
Heated oxygen sensor heater monitor <readiness item="" test=""></readiness>	P0031, P0032, P0037, P0038, P0051, P0052, P0057, P0058	2
Exhaust gas recirculation (EGR) system monitor <readiness item="" test=""></readiness>	P0401	3
Catalytic converter monitor <readiness item="" test=""></readiness>	P0421, P0431	4
Evaporative emission system leak monitor (small leak and gross leak) <readiness item="" test=""></readiness>	P0442, P0455	5
Evaporative purge system monitor	P0441	
Fuel tank pressure sensor monitor	P0450	
Evaporative emission system leak monitor (very small leak) <readiness item="" test=""></readiness>	P0456	6

MONITOR ITEM	DIAGNOSTIC TROUBLE CODE (DTC)	PATTERN
Airflow sensor monitor	P0101	7
Manifold absolute pressure (MAP) sensor monitor	P0106, P0107	_
Intake air temperature sensor monitor	P0111	8
Engine coolant temperature sensor monitor	P0116, P0125	9
Thermostat monitor	P0128	10
Heated oxygen sensor (rear) monitor <readiness item="" test=""></readiness>	P0139, P0159	11
Air fuel ratio feedback monitor	P0134, P0154	12
Heated oxygen sensor (rear) monitor	P0140, P0160	13
Fuel tank temperature sensor monitor	P0181	14
Misfire monitor	P0300, P0301, P0302, P0303, P0304	15
Fuel tank pressure sensor monitor	P0451	16
Power steering pressure switch monitor	P0554	17
Idle speed control system monitor	P0506, P0507	18
MIVEC system monitor	P1020	19
Fuel trim monitor	P0171, P0172, P0174, P0175	20
Heated oxygen sensor monitor	P0131, P0137, P0151, P0157, P2195, P2197	21
Airflow sensor monitor	P0102, P0103	22
Manifold absolute pressure (MAP) sensor monitor	P0108	
Intake air temperature sensor monitor	P0112, P0113	
Engine coolant temperature sensor monitor	P0117, P0118	
Heated oxygen sensor monitor	P0132, P0138, P0152, P0158, P2252, P2253	
Fuel tank temperature sensor monitor	P0182, P0183	_
Injector monitor	P0201, P0202, P0203, P0204	
Crankshaft position sensor monitor	P0335	_
Camshaft position sensor monitor	P0340	_
Exhaust gas recirculation (EGR) valve (stepper motor) monitor	P0403	
Evaporative emission purge solenoid monitor	P0443	_
Evaporative emission ventilation solenoid monitor	P0446	
Fuel tank pressure sensor monitor	P0452, P0453	
Fuel level sensor monitor	P0462, P0463	
Engine oil control valve monitor	P1021	
Barometric pressure sensor monitor	P2228, P2229	

Drive cycle pattern	ENGINE SPEED 1,600 - 3,000 r/min 1,600 - 3,000 r/min IGNITION SWITCH: "LOCK" (OFF) URING THE MONITOR (3) (3) (3) (3) (4) MINUTES TIME AK402430 AD	
Inspection conditions	 Engine coolant temperature: More than 82°C (180°F) Intake air temperature: More than -10°C (14°F) Barometric pressure: More than 76 kPa (22.5 inHg) Condition of A/T: Selector lever "D" range 	
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle for 4 minutes at the following conditions. (During the monitor) <i>NOTE: When the system is normal, the monitor is completed earlier.</i> Vehicle speed: More than 30 km/h (19 mph) Engine speed: More than 1,600 r/min, less than 3,000 r/min Engine load: More than 30%, less than 60% Without rapid accelerator pedal movement Stop the vehicle at the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. <i>NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle.</i> Confirm that the diagnostic trouble code (DTC) is not output. 	

Test	1. Start the engine with all the accessories switched OFF.
procedure	2. Let the engine idle for 10 seconds. (During the monitor)
	3. Turn the ignition switch to the "LOCK" (OFF) position.
	4. Start the engine and do Steps 1 to 3 again.
	 NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle. 5. Confirm that the diagnostic trouble code (DTC) is not output.

TSB Revision

Drive cycle	
pattern	VEHICLE SPEED DURING THE MONITOR
	60 km/h(2)(4) DURING THE MONITOR
	(38 mph) 30 km/h (18mph) (1) IGNITION SWITCH: "LOCK" (OFF) AK402431AC
Inspection	• Engine coolant temperature: More than 82° C (180° F)
conditions	 Intake air temperature: More than 5° C (41° F)
	 Barometric pressure: More than 76 kPa (22.5 inHg)
	Condition of A/T: Selector lever "D" range
Test	1. Start the engine with all the accessories switched OFF.
procedure	2. Accelerate until the vehicle speed is 60 km/h (38 mph) and then drive the vehicle for 90 seconds.
	3. Release the accelerator pedal and reduce vehicle speed to 30 km/h (18 mph). (During the monitor)
	4. Accelerate until the vehicle speed is 60 km/h (38 mph) and then drive the vehicle for 20 seconds.
	5. Release the accelerator pedal and reduce vehicle speed to 30 km/h (18 mph). (During the monitor)
	6. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position.
	7. Start the engine and do Steps 1 to 6 again.
	NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle.

Drive cycle pattern	ENGINE SPEED DURING THE MONITOR DURING THE MONITOR 3,000 r/min
Inspection conditions	 Engine coolant temperature: More than 30° C (86° F) Intake air temperature: More than -10° C (14° F) Barometric pressure: More than 76 kPa (22.5 inHg) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all accessories switched OFF. Drive the vehicle for 5 minutes at the following conditions. (During the monitor) Engine speed: Less than 3,000 r/min Airflow rate: More than 15 g/sec, less than 29 g/sec Accelerator pedal: Except full close Without rapid accelerator pedal movement Release the accelerator pedal for 5 seconds. Drive the vehicle for 2 minutes at the following conditions. (During the monitor) Engine speed: Less than 3,000 r/min Airflow rate: More than 15 g/sec, less than 29 g/sec Accelerator pedal: Except full close Without rapid accelerator pedal movement Airflow rate: More than 15 g/sec, less than 29 g/sec Accelerator pedal: Except full close Without rapid accelerator pedal movement Airflow rate: More than 15 g/sec, less than 29 g/sec Accelerator pedal: Except full close Without rapid accelerator pedal movement NOTE: When the system is normal, the monitor is completed earlier. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 5 again. NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle. Confirm that the diagnostic trouble code (DTC) is not output.

TSB	Revision

13A-28

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

Drive cycle	
pattern	ENGINE SPEED
	1,600 - 4,000 r/min
	IGNITION SWITCH: "LOCK" (OFF)
Inspection	• Engine coolant temperature at engine start: Less than 36° C (96° F)
conditions	 Intake air temperature at engine start: Less than 36° C (96° F)
	 Fuel amount at engine start: More than 15%, less than 40%
	• Engine coolant temperature: More than 60°C (41°F)
	 Intake air temperature: More than 5° C (41° F) Barometric pressure: More than 76 kPa (22.5 inHo)
	 Fuel temperature: Less than 36°C (96°F)
	Condition of A/T: Selector lever "D" range
Test	1. Start the engine with all the accessories switched OFF.
procedure	2. Drive the vehicle for 16 minutes at the following conditions. (During the monitor)
	• Engine speed: More than 1,600 r/min, less than 4,000 r/min
	 Venicle speed: More than 30 km/n (18.7 mpn) Engine load: More than 26% less than 50%
	 Without rapid accelerator pedal movement
	NOTE: Keep running as long as possible with the power steering pressure switch in the OFF position.
	NOTE: When the system is normal, the monitor is completed earlier.
	3. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position.
	4. Start the engine and do Steps 1 to 3 again.
	NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during
	the first drive cycle.
	5. Confirm that the diagnostic trouble code (DTC) is not output.

TSB Revision

PATTERN 6	5
-----------	---

Inspection conditions	 Engine coolant temperature at engine start: Less than 36° C (96° F) Intake air temperature at engine start: Less than 36° C (96° F) Fuel amount at engine start: More than 40%, less than 85% Engine coolant temperature: More than 20° C (68° F) Intake air temperature: More than 5° C (41° F) Barometric pressure: More than 76 kPa (22.5 inHg) Fuel temperature: Less than 32° C (90° F)
Test procedure	 Start the engine with all the accessories switched OFF. Let the engine idle for 16 minutes. (During the monitor) NOTE: When the system is normal, the monitor is completed earlier. Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. NOTE: When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. The second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle. Confirm that the diagnostic trouble code (DTC) is not output.

Drive cycle pattern	ENGINE SPEED
	DURING THE MONITOR
	(3) /
	DURING THE MONITOR 2,000 r/min IDLING (4) (4) (4) (4) (4) IDLING (1) (1) (1) (2) (1) (1) (2) (1) (3) SECONDS (2) (4) TIME 2 SECONDS
	AK402442AB
Inspection condition	 Engine coolant temperature at engine start: More than 0° C (32° F) Condition of A/T: Selector lever "D" range
Test	1. Start the engine with all the accessories switched OFF.
procedure	2. Let the engine idle for 30 seconds. (During the monitor)
	 3. Accelerate the vehicle for 2 seconds at the following conditions. (During the monitor) Engine speed: More than 2,000 r/min Engine load: More than 60% Throttle position sensor output voltage: More than 3.5 volts 4. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position. 5. Start the engine and do Steps 1 to 4 again. 6. Confirm that the diagnostic trouble code (DTC) is not output.

TSB Revision

Drive cycle pattern	VEHICLE SPEED (2) (2) 50 km/h (3) (4) (3) (3) (3) IDLING (1) (3) (4) IGNITION (1) (1) (1) SWITCH: (1) (1) (1) 'LOCK" (OFF) (0) (0) (0) AK402435AB
Inspection conditions	 Engine coolant temperature: More than 76° C (169° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle at more than 50 km/h (31 mph) for 1 minute. Stop at safe place and let the engine idle for 30 seconds. Repeat Steps 2 and 3 again. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position. Confirm that the diagnostic trouble code (DTC) is not output.

PATTERN 9

Drive cycle pattern	VEHICLE SPEED 50 km/h (31 mph) IGNITION SWITCH: "LOCK" (OFF) 20 MINUTES TIME AK402441AC
Inspection conditions	 Engine coolant temperature at engine start: More than 10° C (50° F), less than 76° C (168° F) Difference between engine coolant temperature and intake air temperature at engine start: Less than 5° C (9° F) Dropping of intake air temperature since engine start: Less than 2° C (3.6° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle for 20 minutes at the following conditions. (During the monitor) Vehicle speed: More than 50 km/h (32 mph) Except fuel cut <i>NOTE: The system is normal if engine coolant temperature will rise more than 82°C</i> (180°F) within 20 minutes. Stop at safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

Drive cycle	
pattern	VEHICLE SPEED 50 km/h (32 mph) IGNITION SWITCH: "LOCK" (OFF) URING THE MONITOR (3) (4) TIME
Inspection conditions	 Engine coolant temperature: More than 76° C (169° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle at 50 km/h (31 mph) for 3 minutes. Release the accelerator pedal for 10 seconds then stop the safe place. (During the monitor) Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 4 again. Confirm that the diagnostic trouble code (DTC) is not output.

Drive cycle pattern	VEHICLE SPEED
	50 km/h (31 mph) IDLING IGNITION SWITCH: "LOCK" (OFF) 3 MINUTES 5 SECONDS (4) (4) (4) (5) (5) (5) (5) (7) (7) TIME 5 SECONDS AK402437AB
Inspection conditions	 Engine coolant temperature: More than 76° C (169° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle at 50 km/h (31 mph) for 3 minutes. Release the accelerator pedal for 5 seconds then stop the safe place. Accelerate until the vehicle speed is at 50 km/h (31 mph) at the following conditions. Engine speed: More than 1,500 r/min Engine load: More than 40% Release the accelerator pedal for 5 seconds then stop the safe place. Release the accelerator pedal for 5 seconds then stop the safe place. Repeat Steps 4 and 5 for 2 times. Stop the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 7 again. Confirm that the diagnostic trouble code (DTC) is not output.

Inspection conditions	 Engine coolant temperature at engine start: More than -10° C (14° F), less than 33° C (91° F) Difference between engine coolant temperature and intake air temperature at engine start: Less than 5° C (9° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle at more than 30 km/h (19 mph) until engine coolant temperature rises more than 60° C (140° F). (During the monitor) Stop at safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

TSB Revision	
--------------	--

Drive cycle pattern	ENGINE SPEED 500 - 3,000 r/min (2) IGNITION (1)
	SWITCH: "LOCK" (OFF) 3 MINUTES TIME AK402440AD
Inspection conditions	 Engine coolant temperature: More than -10° C (14° F) Intake air temperature: More than -10° C (14° F) Barometric pressure: More than 76 kPa (22.5 inHg) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle for 3 minutes at the following conditions. (During the monitor) Engine speed: More than 500 r/min, less than 3,000 r/min Engine load: More than 25% Without rapid accelerator pedal change Except fuel cut Stop the vehicle at the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

Drive cycle pattern	VEHICLE SPEED 50 km/h (31 mph) IDLING IDLING IGNITION SWITCH: "LOCK" (OFF) 20 SECONDS AK402438AB
Inspection condition	Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Accelerate until the vehicle speed is more than 50 km/h (31 mph). Engine speed: More than 2,500 r/min Engine load: More than 55% Stop at safe place and let the engine idle for 20 seconds. (During the monitor) Repeat Steps 2 and 3 for 10 times. Stop the vehicle at the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 5 again. Confirm that the diagnostic trouble code (DTC) is not output.

Drive cycle pattern	VEHICLE SPEED 50 km/h (31 mph) IGNITION SWITCH: "LOCK" (OFF) 30 SECONDS TIME AK402441AD
Inspection conditions	 Engine coolant temperature: More than 30° C (86° F) Condition of A/T: Selector lever "D" range
Test procedure	 Start the engine with all the accessories switched OFF. Drive the vehicle at more than 50 km/h (31 mph) for 30 seconds. (During the monitor) Stop the vehicle at the safe place and turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

PATTERN 17
PATTERN 18

Inspection conditions	 Engine coolant temperature: More than 82°C (180°F) Intake air temperature: More than -10°C (14°F) Barometric pressure: More than 76 kPa (22.5 inHg) Condition of A/T: Selector lever "D" range 	
Test procedure	 Start the engine with all the accessories switched OFF. Accelerate until the vehicle speed is more than 1.5 km/h (1 mph). Stop at safe place and let the engine idle for 1 minute. (During the monitor) Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 4 again. Confirm that the diagnostic trouble code (DTC) is not output. 	

PATTERN 19

Inspection condition	Engine coolant temperature: More than 77° C (171° F)
Test procedure	 Start the engine with all the accessories switched OFF. Let the engine idle for 30 seconds. Drive the engine at more than 4,813 r/min for 5 seconds. (During the monitor) Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 4 again. Confirm that the diagnostic trouble code (DTC) is not output.

PATTERN 20

Inspection conditions	Engine coolant temperature: More than 82° C (180° F)
Test procedure	 Start the engine with all the accessories switched OFF. Let the engine idle for 15 minutes. (During the monitor) Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

PATTERN 21

Inspection conditions	 Intake air temperature: More than -10° C (14° F) Engine coolant temperature sensor: More than 7° C (45° F)
Test procedure	 Start the engine with all the accessories switched OFF. Let the engine idle for 4 minutes. (During the monitor) Turn the ignition switch to "LOCK" (OFF) position. Start the engine and do Steps 1 to 3 again. Confirm that the diagnostic trouble code (DTC) is not output.

13A-37	,
--------	---

TSB Revision	
--------------	--

PATTERN 22

Inspection conditions	 Fuel temperature sensor: Less than 36° C (96° F) <fuel monitor="" pressure="" sensor="" tank=""></fuel> Fuel amount at engine start: Less than 85% <fuel monitor="" pressure="" sensor="" tank=""></fuel>
Test 1. Start the engine with all the accessories switched OFF. procedure 2. Let the engine idle at the engine speed less than 1,000 r/min for 15 second monitor) 3. Turn the ignition switch to "LOCK" (OFF) position. 4. Confirm that the diagnostic trouble code (DTC) is not output.	

SYSTEM READINESS TEST STATUS

PURPOSE

The Readiness function (also referred to as I/M Readiness or I/M Flags) indicates if a full diagnostic check has been "Completed" (is "Ready") for each non-continuous monitor. Enhanced I/M State Emission Programs will use the Readiness status (Codes) to see if the vehicle is ready for OBD-II testing. "Incomplete" (Not Ready) codes will be one of the triggers for I/M failure.

OVERVIEW

The ECM <M/T> or PCM <A/T> monitors the following main diagnosis items and records whether the evaluation was completed or is incomplete. The Readiness Codes are established for the I/M programs, thereby confirming that the vehicles have not been tampered with by erasing the diagnostic trouble code(s) (DTCs) before I/M testing. The Readiness Codes and DTCs can be reset by disconnecting the battery or by erasing the codes with a scan tool MB991958 (MUT-III sub assembly). For this reason, all the Readiness Codes must be displayed "Complete" before I/ M testing. When the monitors run and complete, the scan tool MB991958 (MUT-III sub assembly) will display the Readiness Codes as "Complete" (General Scan Tools display as "Ready"). When the vehicle is operating normally and the OBD-II Drive Cycle is carried out, the Readiness Codes will be set as "Complete" on the first drive cycle. For DTCs requiring two drive cycles to detect a fault, the second drive cycle is required to set the Readiness Codes as "Complete" if a fault is detected during the first drive cycle. If the fault is still there after the second drive cycle, a DTC will be set.

- Catalyst: P0421, P0431
- Evaporative system: P0442, P0455, P0456
- Heated oxygen sensor: P0133, P0139, P0153, P0159
- Heated oxygen sensor heater: P0031, P0032, P0037, P0038, P0051, P0052, P0057, P0058
- EGR system: P0401

After all the Readiness Codes are displayed as "Complete", the technician is assured that any DTCs related to the monitor will be displayed if the system has a problem. That is why some State's I/M programs require the Readiness Code as "Complete" before they check for DTCs.

NOTE: After a repair is made for a DTC, the technician should drive the OBD-II Drive Cycle checking that the scan tool MB991958 (MUT-III Sub Assembly) displays all the Readiness Codes as "Complete"

FAIL-SAFE FUNCTION REFERENCE TABLE

When the main sensor malfunctions are detected by the diagnostic test mode, the vehicle is controlled by means of the following defaults.

MALFUNCTION ITEM	CONTROL CONTENTS DURING MALFUNCTION			
Mass airflow sensor	• Uses the throttle position sensor signal and engine speed signal (crankshaft position sensor signal) for basic injector drive time and basic ignition timing from the pre-set mapping.			
Intake air temperature sensor	Controls as if the intake air temperature is 25°C (77°F).			
Engine coolant temperature sensor	Controls as if the engine coolant temperature is 80° C (176° F). (This control will be continued until the ignition switch is turned to " LOCK " (OFF) position even though the sensor signal returns to normal.)			
Camshaft position sensor	Injects fuel into the cylinders in the order 1-3-4-2 with irregular timing. (After the ignition switch is turned to the "ON" position, the No. 1 cylinder top dead center is not detected at all.)			
Barometric pressure sensor	Controls as if the barometric pressure is 101 kPa (30 in.Hg).			
Knock sensor	Switches the ignition timing from ignition timing for high octane to ignition timing for standard octane fuel.			
Heated oxygen sensor <front></front>	Air/fuel ratio closed loop control is not performed.			
Heated oxygen sensor <rear></rear>	Performs the closed loop control of the air/fuel ratio by using only the signal of the heated oxygen sensor (front) installed on the front side of the catalytic converter.			
Generator FR terminal	No generator output suppression control is performed for the electrical load (to be operated as an ordinary generator).			
Misfire detection	The ECM <m t=""> or the PCM stops supplying fuel to the cylinder with the highest misfire rate if a misfire that could damage the catalytic converter is detected.</m>			
Accelerator pedal position sensor (main)	 Detects the amount of the accelerator pedal travel through the use of the accelerator pedal position sensor (sub) signal, but rendering it only as being approximately one-half the normal opening angle. Prohibits the operation of the auto-cruise control. Cuts off fuel when the engine speed exceeds 3,000 r/min. Suppresses the engine output by stopping the electronically controlled throttle valve system if the accelerator pedal position sensor (sub) is also malfunctioning. 			
Accelerator pedal position sensor (sub)	 Detects the amount of the accelerator pedal travel through the use of the accelerator pedal position sensor (main) signal, but rendering it only as being approximately one-half the normal opening angle. Prohibits the operation of the auto-cruise control. Cuts off fuel when the engine speed exceeds 3,000 r/min. Suppresses the engine output by stopping the electronically controlled throttle valve system if the accelerator pedal position sensor (main) is also malfunctioning. 			

TSB Re	vision		

M1131153000686

MALFUNCTION ITEM	CONTROL CONTENTS DURING MALFUNCTION
Throttle position sensor (main)	 Controls the throttle valve position through the use of the throttle position sensor (sub) signal. Renders the amount of accelerator pedal travel as being approximately one-half the normal opening angle. Prohibits the operation of the engine speed feedback control. Prohibits the operation of the auto-cruise control. Cuts off fuel when the engine speed exceeds 3,000 r/min. Suppresses the engine output by stopping the electronically controlled throttle valve system if the throttle position sensor (sub) is also malfunctioning.
Throttle position sensor (sub)	 Controls the throttle valve position through the use of the throttle position sensor (main) signal. Renders the amount of accelerator pedal travel as being approximately one-half the normal opening angle. Prohibits the operation of the auto-cruise control. Cuts off fuel when the engine speed exceeds 3,000 r/min. Prohibits the idle speed control from learning. Suppresses the engine output by stopping the electronically controlled throttle valve system if the throttle position sensor (main) is also malfunctioning.
Throttle valve position feedback	 Suppresses the engine output by stopping the electronically controlled throttle valve system. Prohibits the operation of the auto-cruise control. Prohibits the operation of the engine speed feedback control.
Throttle actuator control motor	 Suppresses the engine output by stopping the electronically controlled throttle valve system. Prohibits the operation of the auto-cruise control. Prohibits the operation of the engine speed feedback control.
Throttle actuator control computer	 Suppresses the engine output by stopping the electronically controlled throttle valve system. Prohibits the operation of the auto-cruise control. Prohibits the operation of the engine speed feedback control.
Communication between throttle actuator control computer and engine control computer	 Renders the amount of accelerator pedal travel as being approximately one-half the normal opening angle. Prohibits the operation of the auto-cruise control. Prohibits the operation of the engine speed feedback control. Cuts off fuel when the engine speed exceeds 3,000 r/min.
Switching to high-speed cam in Mitsubishi Innovative Valve timing Electronic Control <mivec></mivec>	 Does not switch to high-speed cam. Cut off fuel when the engine speed exceeds 5,000 r/min.

DIAGNOSTIC TROUBLE CODE CHART

M1131151001768

13A-41

During diagnosis, a DTC associated with other system may be set when the ignition switch is turned on with connector(s) disconnected. On completion, confirm all systems for DTCs. If DTCs are set, erase them all.

DTC		REFERENCE PAGE
P0031	Cylinder 1, 4 heated oxygen sensor heater (front) control circuit low	P.13A-50
P0032	Cylinder 1, 4 heated oxygen sensor heater (front) control circuit high	P.13A-64
P0037	Cylinder 1, 4 heated oxygen sensor heater (rear) control circuit low	P.13A-69
P0038	Cylinder 1, 4 heated oxygen sensor heater (rear) control circuit high	P.13A-83
P0051	Cylinder 2, 3 heated oxygen sensor heater (front) control circuit low	P.13A-88
P0052	Cylinder 2, 3 heated oxygen sensor heater (front) control circuit high	P.13A-102
P0057	Cylinder 2, 3 heated oxygen sensor heater (rear) control circuit low	P.13A-107
P0058	Cylinder 2, 3 heated oxygen sensor heater (rear) control circuit high	P.13A-121
P0069	Abnormal correlation between manifold absolute pressure sensor and barometric pressure sensor	P.13A-125
P0101*	Mass airflow circuit range/performance problem	P.13A-130
P0102*	Mass airflow circuit low input	P.13A-141
P0103*	Mass airflow circuit high input	P.13A-151
P0106	Manifold absolute pressure circuit range/performance problem	P.13A-158
P0107	Manifold absolute pressure circuit low input	P.13A-172
P0108	Manifold absolute pressure circuit high input	P.13A-184
P0111*	Intake air temperature circuit range/performance problem	P.13A-193
P0112*	Intake air temperature circuit low input	P.13A-202
P0113*	Intake air temperature circuit high input	P.13A-209
P0116*	Engine coolant temperature circuit range/performance problem	P.13A-219
P0117*	Engine coolant temperature circuit low input	P.13A-228
P0118*	Engine coolant temperature circuit high input	P.13A-235
P0122*	Throttle position sensor (main) circuit low input	P.13A-246
P0123*	Throttle position sensor (main) circuit high input	P.13A-257
P0125*	Insufficient coolant temperature for closed loop fuel control	P.13A-265
P0128	Coolant thermostat (coolant temperature below thermostat regulating temperature)	P.13A-278
P0131	Cylinder 1, 4 heated oxygen sensor (front) circuit low voltage	P.13A-280
P0132	Cylinder 1, 4 heated oxygen sensor (front) circuit high voltage	P.13A-296
P0133	Cylinder 1, 4 heated oxygen sensor (front) circuit slow response	P.13A-301
P0134*	Cylinder 1, 4 heated oxygen sensor (front) circuit no activity detected	P.13A-307

13A-42

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

DTC	DIAGNOSTIC ITEM	REFERENCE PAGE
P0137	Cylinder 1, 4 heated oxygen sensor (rear) circuit low voltage	P.13A-317
P0138	Cylinder 1, 4 heated oxygen sensor (rear) circuit high voltage	P.13A-333
P0139	Cylinder 1, 4 heated oxygen sensor (rear) circuit slow response	P.13A-338
P0140	Cylinder 1, 4 heated oxygen sensor (rear) circuit no activity detected	P.13A-342
P0151	Cylinder 2, 3 heated oxygen sensor (front) circuit low voltage	P.13A-346
P0152	Cylinder 2, 3 heated oxygen sensor (front) circuit high voltage	P.13A-362
P0153	Cylinder 2, 3 heated oxygen sensor (front) circuit slow response	P.13A-367
P0154*	Cylinder 2, 3 heated oxygen sensor (front) circuit no activity detected	P.13A-373
P0157	Cylinder 2, 3 heated oxygen sensor (rear) circuit low voltage	P.13A-383
P0158	Cylinder 2, 3 heated oxygen sensor (rear) circuit high voltage	P.13A-399
P0159	Cylinder 2, 3 heated oxygen sensor (rear) circuit slow response	P.13A-404
P0160	Cylinder 2, 3 heated oxygen sensor (rear) circuit no activity detected	P.13A-408
P0171	System too lean (cylinder 1, 4)	P.13A-412
P0172	System too rich (cylinder 1, 4)	P.13A-420
P0174	System too lean (cylinder 2, 3)	P.13A-425
P0175	System too rich (cylinder 2, 3)	P.13A-433
P0181	Fuel tank temperature sensor circuit range/performance	P.13A-439
P0182	Fuel tank temperature sensor circuit low input	P.13A-451
P0183	Fuel tank temperature sensor circuit high input	P.13A-457
P0201	Injector circuit-cylinder 1	P.13A-468
P0202	Injector circuit-cylinder 2	P.13A-479
P0203	Injector circuit-cylinder 3	P.13A-490
P0204	Injector circuit-cylinder 4	P.13A-501
P0222*	Throttle position sensor (sub) circuit low input	P.13A-512
P0223*	Throttle position sensor (sub) circuit high input	P.13A-523
P0300	Random/multiple cylinder misfire detected	P.13A-531
P0301	Cylinder 1 misfire detected	P.13A-537
P0302	Cylinder 2 misfire detected	P.13A-540
P0303	Cylinder 3 misfire detected	P.13A-543
P0304	Cylinder 4 misfire detected	P.13A-547
P0325	Knock sensor circuit	P.13A-551
P0335*	Crankshaft position sensor circuit	P.13A-559
P0340*	Camshaft position sensor circuit	P.13A-578
P0401	Exhaust gas recirculation flow insufficient detected	P.13A-595
P0403	Exhaust gas recirculation control circuit	P.13A-599
P0421	Warm up catalyst efficiency below threshold (cylinder 1, 4)	P.13A-612

DTC	DIAGNOSTIC ITEM		REFERENCE PAGE
P0431	Warm up catalyst efficiency below thr	P.13A-614	
P0441	Evaporative emission control system	incorrect purge flow	P.13A-616
P0442	Evaporative emission control system	leak detected (small leak)	P.13A-620
P0443	Evaporative emission control system	purge control valve circuit	P.13A-634
P0446	Evaporative emission control system	vent control circuit	P.13A-646
P0450	Evaporative emission control system	pressure sensor malfunction	P.13A-658
P0451	Evaporative emission control system	pressure sensor range/performance	P.13A-679
P0452	Evaporative emission control system	pressure sensor low input	P.13A-700
P0453	Evaporative emission control system	pressure sensor high input	P.13A-721
P0455	Evaporative emission control system	leak detected (gross leak)	P.13A-742
P0456	Evaporative emission control system	leak detected (very small leak)	P.13A-759
P0461	Fuel level sensor (main) circuit range	/performance	P.13A-773
P0462	Fuel level sensor circuit low input		P.13A-780
P0463	Fuel level sensor circuit high input		P.13A-787
P0500*	Vehicle speed sensor malfunction <m t=""></m>		P.13A-794
P0506	Idle control system RPM lower than expected		P.13A-808
P0507	Idle control system RPM higher than expected		P.13A-811
P0513	Immobilizer malfunction		P.13A-814
P0551	Power steering pressure switch circuit range/performance		P.13A-816
P0554	Power steering pressure switch circuit intermittent		P.13A-829
P0603*	EEPROM malfunction		P.13A-834
P0606*	Engine control module <m t=""> or powertrain control module main processor malfunction</m>		P.13A-836
P0622	Generator FR terminal circuit malfund	ction	P.13A-838
P0630*	VIN malfunction		P.13A-845
P0638*	Throttle actuator control motor circuit	range/performance	P.13A-848
P0642*	Throttle position sensor power supply	1	P.13A-854
P0657*	Throttle actuator control motor relay circuit malfunction		P.13A-856
P0705	Transmission range switch circuit malfunction (PRNDL input) • A/T DTC switch s • A/T DTC switch s</br>	C No. P1770 (Transmission range system: Open circuit) C No. P1771 (Transmission range system: Short circuit)	P.23A-64
P0712*	Transmission fluid temperature sensor low input 	C No. P1764 (Transmission fluid ature sensor system: Short circuit)	P.23A-64
P0713*	Transmission fluid temperature sensor high input 	C No. P1763 (Transmission fluid ature sensor system: Open circuit)	P.23A-64

DTC	DIAGNOSTIC ITEM		REFERENCE PAGE
P0715*	Input/turbine speed sensor circuit 	 A/T DTC No. P1766 (Input shaft speed sensor system: Short circuit/Open circuit) 	P.23A-64
P0720*	Output speed sensor circuit 	 A/T DTC No. P1767 (Output shaft speed sensor system: Short circuit/Open circuit) 	P.23A-64
P0731*	Gear 1 incorrect ratio 	 A/T DTC No. P1779 (1st gear incorrect ratio) 	P.23A-64
P0732*	Gear 2 incorrect ratio 	 A/T DTC No. P1780 (2nd gear incorrect ratio) 	P.23A-64
P0733*	Gear 3 incorrect ratio 	 A/T DTC No. P1781 (3rd gear incorrect ratio) 	P.23A-64
P0734*	Gear 4 incorrect ratio 	 A/T DTC No. P1782 (4th gear incorrect ratio) 	P.23A-64
P0736*	Gear R incorrect ratio 	A/T DTC No. P1784 (Reverse gear incorrect ratio)	P.23A-64
P0741	Torque converter clutch circuit performance or stuck off 	 A/T DTC No. P1786 (Torque converter clutch solenoid system: Defective system) 	P.23A-64
P0742	Torque converter clutch circuit stuck on 	 A/T DTC No. P1787 (Torque converter clutch solenoid system: Lock-up stuck on) 	P.23A-64
P0743*	Torque converter clutch circuit electrical 	 A/T DTC No. P1778 (Torque converter clutch solenoid system: Short circuit/Open circuit) 	P.23A-64
P0753*	Shift solenoid "A" electrical 	 A/T DTC No. P1773 (Low and reverse solenoid valve system: Short circuit/Open circuit) 	P.23A-64
P0758*	Shift solenoid "B" electrical 	 A/T DTC No. P1774 (Underdrive solenoid valve system: Short circuit/Open circuit) 	P.23A-64
P0763*	Shift solenoid "C" electrical 	 A/T DTC No. P1775 (Second solenoid valve system: Short circuit/Open circuit) 	P.23A-64
P0768*	Shift solenoid "D" electrical 	 A/T DTC No. P1776 (Overdrive solenoid valve system: Short circuit/Open circuit) 	P.23A-64
P1020	Mitsubishi innovative valvo (MIVEC) performance pro	Mitsubishi innovative valve timing and lift electronic control system (MIVEC) performance problem	
P1021	Engine oil control valve circuit		P.13A-881
P1530	A/C1 switch circuit intermi	ttent	P.13A-892
P1602*	Communication malfunction (between ECM <m t=""> or PCM main processor and system LSI)</m>		P.13A-893
P1603*	Battery backup line malfunction		P.13A-895
P1751*	A/T control relay malfunction 	• A/T DTC No. P1788 (A/T control relay system: Short circuit to ground /open circuit)	P.23A-64
P2066	Fuel level sensor (sub) cir	cuit range/performance	P.13A-902
P2100*	Throttle actuator control m	notor circuit (open)	P.13A-907
P2101*	Throttle actuator control m	notor magneto malfunction	P.13A-915
P2122*	Accelerator pedal position	Accelerator pedal position sensor (main) circuit low input	

DTC	DIAGNOSTIC ITEM	REFERENCE PAGE
P2123*	Accelerator pedal position sensor (main) circuit high input	P.13A-931
P2127*	Accelerator pedal position sensor (sub) circuit low input	P.13A-938
P2128*	Accelerator pedal position sensor (sub) circuit high input	P.13A-948
P2135*	Throttle position sensor (main and sub) range/performance problem	P.13A-955
P2138*	Accelerator pedal position sensor (main and sub) range/performance problem	P.13A-961
P2195	Cylinder 1, 4 heated oxygen sensor (front) inactive	P.13A-975
P2197	Cylinder 2, 3 heated oxygen sensor (front) inactive	P.13A-978
P2228*	Barometric pressure circuit low input	P.13A-981
P2229*	Barometric pressure circuit high input	P.13A-983
P2252	Heated oxygen sensor offset circuit low voltage	P.13A-985
P2253	Heated oxygen sensor offset circuit high voltage	P.13A-987
U1073	Bus off	P.13A-989
U1102	ABS-ECU time-out	P.13A-991
U1108*	Combination meter time-out	P.13A-995
U1109	ETACS-ECU time-out	P.13A-1000
U1110	A/C-ECU time-out	P.13A-1004
U1117	Immobilizer-ECU time-out	P.13A-1008

NOTE: Do not replace the engine control module (ECM) <M/T> or the powertrain control module (PCM) <A/T> until a through terminal check reveals there are no short/open circuits.

NOTE: Check that the ECM <//t>

M/T> or the PCM
A/T> ground circuit is normal before checking for the cause of the problem.

NOTE: After the ECM <M/T> or the PCM <A/T> detects a malfunction, a diagnostic trouble code is recorded the next time the engine is started and the same malfunction is re-detected. However, for items marked with a "*", the diagnostic trouble code is recorded on the first detection of the malfunction.

SYMPTOM CHART

During diagnosis, a DTC associated with other systems may be set when the ignition switch is turned on with connector(s) disconnected. On completion, confirm all systems for DTCs. If DTCs are set, erase them all.

Disconnecting the battery cables or removing the combination meter will erase the learned value of the fuel gauge. To recover the learned value, input a vehicle speed (by actually driving the vehicle or inputting a simulated vehicle speed), and stop the vehicle. This will complete the learning process. NOTE: Check that the ECM <M/T> or the PCM <A/T> ground circuit is normal before checking for the cause of the problem.

TROUBLE SYM	PTOMS	INSPECTION PROCEDURE	REFERENCE PAGE
Communication	Communication with all systems is not possible	1	P.13A-1011
impossible	Communication with ECM <m t=""> or PCM only is not possible</m>	2	P.13A-1014
Malfunction Indicator Lamp (SERVICE ENGINE SOON	The Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) does not illuminate right after the ignition switch is turned to the "ON" position	3	P.13A-1017
or Check Engine Lamp) and related parts	The Malfunction Indicator Lamp (SERVICE ENGINE SOON or Check Engine Lamp) remains illuminated and never goes out	4	P.13A-1018
Starting	Cranks, won't start	5	P.13A-1020
	Starts up and dies	6	P.13A-1026
	Hard starting	7	P.13A-1031
Idling stability (improper idling)	Unstable idle (rough idle, hunting)	8	P.13A-1035
	Idle speed is high (improper idle speed)	9	P.13A-1039
	Idle speed is low (improper idle speed)	10	P.13A-1041
Idling stability	When the engine is cold, it stalls at idle (die out)	11	P.13A-1043
(engine stalls)	When the engine is hot, it stalls at idle (die out)	12	P.13A-1046
	The engine stalls when accelerating (pass out)	13	P.13A-1051
	The engine stalls when decelerating	14	P.13A-1053
Driving	Hesitation, sag or stumble	15	P.13A-1055
	Acceleration shock	16	P.13A-1060
	Deceleration shock	17	P.13A-1061
	Poor acceleration	18	P.13A-1062
	Surge	19	P.13A-1067
	Knocking	20	P.13A-1072

TROUBLE SYMPTOMS		INSPECTION PROCEDURE	REFERENCE PAGE
Dieseling (Run-c	on)	21	P.13A-1073
Too high CO and HC concentration when idling		22	P.13A-1074
IM240 test	Transient, mass emission tailpipe test failure	23	P.13A-1078
failure	Purge flow test of the evaporative emission canister failure	24	P.13A-1089
	Pressure test of the evaporative system failure	25	P.13A-1090
Generator output voltage is low (approximately 12.3 volts)		26	P.13A-1091
Fans (radiator fan, A/C condenser fan) are inoperative		27	P.13A-1095
Power supply system and ignition switch-IG system		28	P.13A-1099
Fuel pump system		29	P.13A-1110
Ignition switch-ST system <m t=""></m>		30	P.13A-1123
Ignition switch-ST system and transmission range switch system 		31	P.13A-1131
Ignition circuit system		32	P.13A-1136
A/C system		33	P.13A-1144

PROBLEM SYMPTOMS TABLE (FOR YOUR INFORMATION)

ITEMS		SYMPTOM	
At starting	Won't start	The starter cranks the engine, but there is no combustion within the cylinders, and the engine won't start.	
	Starts up and dies	The engine starts, but then engine soon stalls.	
	Hard starting	Engine starts after cranking a while.	
Idling stability	Hunting	Engine speed doesn't remain constant; changes at idle.	
	Rough idle	Usually, a judgement can be based upon the movement of the tachometer pointer, and the vibration transmitted to the steering wheel, shift lever, body, etc.	
	Incorrect idle speed	The engine doesn't idle at the correct speed.	
	Engine stall (die out)	The engine stalls when the foot is taken from the accelerator pedal, regardless of whether the vehicle is moving or not.	
	Engine stall (pass out)	The engine stalls when the accelerator pedal is depressed.	

ITEMS		SYMPTOM
At driving	Hesitation Sag	"Hesitation" is the delay in response of the vehicle speed (engine speed). This occurs when the accelerator is depressed in order to accelerate from the speed at which the vehicle is now traveling, or a temporary drop in vehicle speed (engine speed) during such acceleration. Serious hesitation is called "sag".
		AKX01361AB
	Poor acceleration	Poor acceleration is inability to obtain an acceleration corresponding to the degree of throttle opening, even though acceleration is smooth. Also the inability to reach maximum speed.
	Stumble	Engine speed increase is delayed when the accelerator pedal is initially depressed for acceleration.
	Shock	The feeling of a comparatively large impact or vibration when the engine is accelerated or decelerated.
	Surge	This is slight acceleration and deceleration feel usually felt during steady, light throttle cruise. Most notable under light loads.
	Knocking	A sharp sound during driving, which sounds like a hammer striking the cylinder walls. It makes poor driveability.
At stopped	Run on ("Dieseling")	The condition in which the engine continues to run after the ignition switch is turned to the "LOCK" (OFF) position. Also called "dieseling".

TSB Revision	n
--------------	---

DIAGNOSTIC TROUBLE CODE PROCEDURES

DTC P0031: Cylinder 1, 4 Heated Oxygen Sensor Heater (front) Control Circuit Low

AK403974

|--|

M

CONNECTOR: B-36

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 1, 4 heated oxygen sensor (front) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 126) controls continuity to the cylinder 1, 4 heated oxygen sensor (front) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

- The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.
- The ECM <M/T> or the PCM <A/T> checks whether the heater voltage is within a specified range when the heater is not energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 1, 4 heated oxygen sensor heater (front) current or voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

AK500450

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (front) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (front) heater current has continued to be lower than 0.17 ampere for 2 seconds.

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (front) heater is off.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (front) heater voltage has continued to be lower than 2.0 volts for 2 seconds.

TSB Revision	

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most

likely causes for this code to be set are:)

- Open or shorted cylinder 1, 4 heated oxygen sensor (front) heater circuit, harness damage or connector damage.
- Cylinder 1, 4 heated oxygen sensor (front) heater failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991316: Test Harness
- MB991923: Power Plant ECU Check Harness

STEP 1. Check harness connector B-36 at the cylinder 1, 4 heated oxygen sensor (front) for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 2.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 2. Check the cylinder 1, 4 heated oxygen sensor (front).

(1) Disconnect cylinder 1, 4 heated oxygen sensor (front) connector B-36 and connect test harness special tool, MB991316, to the connector on the cylinder 1, 4 heated oxygen (front) sensor side.

(2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).

Standard value: 4.5 - 8.0 ohms [at 20° C (68° F)]

Q: Is the measured resistance between 4.5 and 8.0 ohms [at 20° C (68° F)]?

- YES : Go to Step 3.
- **NO :** Replace the cylinder 1, 4 heated oxygen sensor (front). Then go to Step 12.

FSB Revision	
---------------------	--

STEP 3. Measure the power supply voltage at cylinder 1, 4 heated oxygen sensor (front) harness side connector B-36.

- (1) Disconnect the connector B-36 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 4.

AKX01496AY

STEP 4. Check harness connector B-16X at the MFI relay for damage.

Q: Is the harness connector in good condition?

- YES : Repair harness wire between MFI relay connector B-16X (terminal No. 4) and cylinder 1, 4 heated oxygen sensor (front) connector B-36 (terminal No. 1) because of open circuit or short circuit to ground. Then go to Step 12.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

CHECK HARNESS CONNECTOR

STEP 5. Measure the power supply voltage at ECM <M/T> or PCM <A/T> connector B-22 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

TSB Revision

AK500076AB

- (3) Measure the voltage between terminal No. 126 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 8.
 - NO: Go to Step 6.

STEP 6. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

- Q: Is the harness connector in good condition? YES : Go to Step 7.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB	Revision	

Q: Is the harness wire in good condition?

- **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

STEP 8. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 9. Check for harness damage between MFI relay connector B-16X (terminal No. 4) and cylinder 1, 4 heated oxygen sensor (front) connector B-36 (terminal No. 1). Q: Is the harness wire in good condition?

- YES : Go to Step 10.
- **NO :** Repair it. Then go to Step 12.

Q: Is the harness wire in good condition?

- YES : Go to Step 11.
- **NO :** Repair it. Then go to Step 12.

STEP 11. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0031 set?
 - **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
 - **NO**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 12. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0031 set?

- **YES** : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0032: Cylinder 1, 4 Heated Oxygen Sensor Heater (front) Control Circuit High

Cylinder 1, 4 Heated Oxygen Sensor (front) Heater Circuit

AK403974

M

CONNECTOR: B-36

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 1, 4 heated oxygen sensor (front) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 126) controls continuity to the cylinder 1, 4 heated oxygen sensor (front) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 1, 4 heated oxygen sensor heater (front) current is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

Sensor (The sensor below is determined to be normal)

Engine coolant temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

AK500450

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (front) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (front) heater current has continued to be higher than 10.5 ampere for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Cylinder 1, 4 heated oxygen sensor (front) heater failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB Revision	

DIAGNOSIS

Required Special Tool:

• MB991316: Test Harness

STEP 1. Check the cylinder 1, 4 heated oxygen sensor (front).

 Disconnect cylinder 1, 4 heated oxygen sensor (front) connector B-36 and connect test harness special tool, MB991316, to the connector on the cylinder 1, 4 heated oxygen (front) sensor side.

- HEATED OXYGEN SENSOR COMPONENT SIDE CONNECTOR BLUE MB991316 AKX01624AT
- (2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).

Standard value: 4.5 - 8.0 ohms [at 20° C (68° F)]

- Q: Is the measured resistance between 4.5 and 8.0 ohms [at 20° C (68° F)]?
 - YES : Go to Step 2.
 - **NO :** Replace the cylinder 1, 4 heated oxygen sensor (front). Then go to Step 3.

h

CONNECTOR: B-36

STEP 2. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0032 set?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 3.
 - **NO**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 3. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0032 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0037: Cylinder 1, 4 Heated Oxygen Sensor Heater (rear) Control Circuit Low

Cylinder 1, 4 Heated Oxygen Sensor (rear) Heater Circuit

AK403975

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 1, 4 heated oxygen sensor (rear) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 138) controls continuity to the cylinder 1, 4 heated oxygen sensor (rear) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

• The ECM <M/T> or the PCM <A/T> checks whether the heater voltage is within a specified range when the heater is not energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 1, 4 heated oxygen sensor heater (rear) current or voltage is out of specified range.

MONITOR EXECUTION

Continuous

TSB Revision	

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

DTC SET CONDITIONS

Logic Flow Chart

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (rear) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (rear) heater current has continued to be lower than 0.17 ampere for 2 seconds.

TSB	Revision		

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (rear) heater is off.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (rear) heater voltage has continued to be lower than 2.0 volts for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Open or shorted cylinder 1, 4 heated oxygen sensor (rear) heater circuit, or harness damage.
- Cylinder 1, 4 heated oxygen sensor (rear) heater failed.
- Connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MD998464: Test Harness
- MB991923: Power Plant ECU Check Harness

STEP 1. Check harness connector B-37 at the cylinder 1, 4 heated oxygen sensor (rear) for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 2.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB	Revision	

STEP 2. Check the cylinder 1, 4 heated oxygen sensor (rear).

(1) Disconnect cylinder 1, 4 heated oxygen sensor (rear) connector B-37 and connect test harness special tool, MD998464, to the connector on the cylinder 1, 4 heated oxygen (rear) sensor side.

- (2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).
 - Standard value: 11 18 ohms [at 20° C (68° F)]
- Q: Is the measured resistance between 11 and 18 ohms [at 20° C (68° F)]?
 - YES : Go to Step 3.
 - **NO :** Replace the cylinder 1, 4 heated oxygen sensor (rear). Then go to Step 12.

STEP 3. Measure the power supply voltage at cylinder 1, 4 heated oxygen sensor (rear) harness side connector B-37.

- (1) Disconnect the connector B-37 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 4.

TSB Revision

AKX01498BM

STEP 4. Check harness connector B-16X at the MFI relay for damage.

Q: Is the harness connector in good condition?

- YES : Repair harness wire between MFI relay connector B-16X (terminal No. 4) and cylinder 1, 4 heated oxygen sensor (rear) connector B-37 (terminal No. 1) because of open circuit or short circuit to ground. Then go to Step 12.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 5. Measure the power supply voltage at ECM <M/T> or PCM <A/T> connector B-22 by using power plant ECU check harness special tool MB991923.

- (1) Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 138 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 8.
 - NO: Go to Step 6.

STEP 6. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

 YES : Go to Step 7.
 NO : Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

CONNECTOR: B-37 MIL CYLINDER 1, 4 HEATED OXÝGEN SENSOR (REAR) Q 37 (B) R HARNESS CONNECTOR: COMPONENT SIDE AK500104AB **CONNECTOR: B-22** NECM <M/T> OR PCM <A/T> § -Qh AIR CLEANER B-22 HARNESS CONNECTOR: COMPONENT SIDE AK500056AB

STEP 7. Check for open circuit or short circuit to ground between cylinder 1, 4 heated oxygen sensor (rear) connector B-37 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-22 (terminal No. 138).

Q: Is the harness wire in good condition?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

STEP 8. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

CONNECTOR: B-37 CYLINDER 1, 4 HEATED OXYGEN SENSOR (REAR) B-37 (B) CYLINDER 1, 4 HEATED OXYGEN CYLINDER 1, 4 HEATED OXYGEN SENSOR (REAR) CONNECTOR: CONNECTOR: COMPONENT SIDE AK500104AB

STEP 9. Check for harness damage between MFI relay connector B-16X (terminal No. 4) and cylinder 1, 4 heated oxygen sensor (rear) connector B-37 (terminal No. 1). Q: Is the harness wire in good condition?

- YES : Go to Step 10.
- **NO :** Repair it. Then go to Step 12.

- Q: Is the harness wire in good condition?
 - YES: Go to Step 11.
 - **NO :** Repair it. Then go to Step 12.

STEP 11. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0037 set?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
 - **NO :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 12. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0037 set?

- **YES :** Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0038: Cylinder 1, 4 Heated Oxygen Sensor Heater (rear) Control Circuit High

Cylinder 1, 4 Heated Oxygen Sensor (rear) Heater Circuit

AK403975

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 1, 4 heated oxygen sensor (rear) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 138) controls continuity to the cylinder 1, 4 heated oxygen sensor (rear) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 1, 4 heated oxygen sensor heater (rear) current is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

AK500450

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 1, 4 heated oxygen sensor (rear) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 1, 4 heated oxygen sensor (rear) heater current has continued to be higher than 10.5 ampere for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TSB Revision	

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

TROUBLESHOOTING HINTS (The most

likely causes for this code to be set are:)

- Cylinder 1, 4 heated oxygen sensor (rear) failed.
- Connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tool:

• MD998464: Test Harness

STEP 1. Check the cylinder 1, 4 heated oxygen sensor (rear).

 Disconnect cylinder 1, 4 heated oxygen sensor (rear) connector B-37 and connect test harness special tool, MD998464, to the connector on the cylinder 1, 4 heated oxygen (rear) sensor side.

- (2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).
 - Standard value: 11 18 ohms [at 20° C (68° F)]
- Q: Is the measured resistance between 11 and 18 ohms [at 20° C (68° F)]?
 - YES : Go to Step 2.
 - **NO :** Replace the cylinder 1, 4 heated oxygen sensor (rear). Then go to Step 3.

TSB Revision	

STEP 2. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0038 set?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 3.
 - **NO**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 3. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0038 set?

- **YES** : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0051: Cylinder 2, 3 Heated Oxygen Sensor Heater (front) Control Circuit Low

Cylinder 2, 3 Heated Oxygen Sensor (front) Heater Circuit

AK403976

0

2 1

AK500074AB

MFI RELAY

2 1

B-16X

2 1 X 4 3

CIRCUIT OPERATION

CONNECTOR: B-16X

FRONT OF VEHICLE

2 1

MFI RELA

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 2, 3 heated oxygen sensor (front) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 125) controls continuity to the cylinder 2, 3 heated oxygen sensor (front) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

• The ECM <M/T> or the PCM <A/T> checks whether the heater voltage is within a specified range when the heater is not energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 2, 3 heated oxygen sensor heater (front) current or voltage is out of specified range.

MONITOR EXECUTION

Continuous

TSB Revision	

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

DTC SET CONDITIONS

Logic Flow Chart

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 2, 3 heated oxygen sensor (front) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (front) heater current has continued to be lower than 0.17 ampere for 2 seconds.

TSB	Revision		

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 2, 3 heated oxygen sensor (front) heater is off.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (front) heater voltage has continued to be lower than 2.0 volts for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Open or shorted cylinder 2, 3 heated oxygen sensor (front) heater circuit, or harness damage.
- Cylinder 2, 3 heated oxygen sensor (front) heater failed.
- Connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991316: Test Harness
- MB991923: Check Harness

STEP 1. Check harness connector B-35 at the cylinder 2, 3 heated oxygen sensor (front) for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 2.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

STEP 2. Check the cylinder 2, 3 heated oxygen sensor (front).

 Disconnect cylinder 2, 3 heated oxygen sensor (front) connector B-35 and connect test harness special tool, MB991316, to the connector on the cylinder 2, 3 heated oxygen (front) sensor side.

(2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).

Standard value: 4.5 - 8.0 ohms [at 20° C (68° F)]

Q: Is the measured resistance between 4.5 and 8.0 ohms [at 20° C (68° F)]?

- YES : Go to Step 3.
- **NO :** Replace the cylinder 2, 3 heated oxygen sensor (front). Then go to Step 12.

STEP 3. Measure the power supply voltage at cylinder 2, 3 heated oxygen sensor (front) harness side connector B-35.

- (1) Disconnect the connector B-35 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 4.

TSB Revision

AKX01496BB

STEP 4. Check harness connector B-16X at the MFI relay for damage.

Q: Is the harness connector in good condition?

- YES : Repair harness wire between MFI relay connector B-16X (terminal No. 4) and cylinder 2, 3 heated oxygen sensor (front) connector B-35 (terminal No. 1) because of open circuit or short circuit to ground. Then go to Step 12.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

POWER PLANT ECU

CHECK HARNESS CONNECTOR

STEP 5. Measure the power supply voltage at ECM <M/T> or PCM <A/T> connector B-22 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

TSB Revision

AK500076AB

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 125 and ground.
 Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 8.
 - NO: Go to Step 6.

STEP 6. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

- Q: Is the harness connector in good condition? YES : Go to Step 7.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

Q: Is the harness wire in good condition?

- **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

STEP 8. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 9. Check for harness damage between MFI relay connector B-16X (terminal No. 4) and cylinder 2, 3 heated oxygen sensor (front) connector B-35 (terminal No. 1). Q: Is the harness wire in good condition?

- YES: Go to Step 10.
- **NO :** Repair it. Then go to Step 12.

TSB Revision

-35 (GR)

H

AK500106AB

B

_XX\$

-1

ТŤ

HARNESS Tope CONNECTOR: COMPONENT SIDE <

CONNECTOR: B-35 h \cap Г CYLINDER 2, 3 HEATED OXÝGEN SENSOR (FRONT) B-35 (GR) H HARNESS 710 CONNECTOR: (SP COMPONENT SIDE < AK500106AB CONNECTOR: B-22 MECM <M/T> OR PCM <A/T> § -Qh **AIR CLEANER** B-22 HARNESS CONNECTOR: COMPONENT SIDE AK500056AB

STEP 10. Check for harness damage between cylinder 2, 3 heated oxygen sensor (front) connector B-35 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-22 (terminal No. 125).

- Q: Is the harness wire in good condition?
 - YES : Go to Step 11.
 - **NO :** Repair it. Then go to Step 12.

STEP 11. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0051 set?
 - **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
 - **NO**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 12. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0051 set?

- YES : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0052: Cylinder 2, 3 Heated Oxygen Sensor Heater (front) Control Circuit High

Cylinder 2, 3 Heated Oxygen Sensor (front) Heater Circuit

AK403976

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 2, 3 heated oxygen sensor (front) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 125) controls continuity to the cylinder 2, 3 heated oxygen sensor (front) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 2, 3 heated oxygen sensor heater (front) current is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

TSB Revision

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

AK500450

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 2, 3 heated oxygen sensor (front) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (front) heater current has continued to be higher than 10.5 ampere for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most

likely causes for this code to be set are:)

- Cylinder 2, 3 heated oxygen sensor (front) heater failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tool:

• MB991316: Test Harness

STEP 1. Check the cylinder 2, 3 heated oxygen sensor (front).

 Disconnect cylinder 2, 3 heated oxygen sensor (front) connector B-35 and connect test harness special tool, MB991316, to the connector on the cylinder 2, 3 heated oxygen (front) sensor side.

(2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).

Standard value: 4.5 – 8.0 ohms [at 20° C (68° F)]

- Q: Is the measured resistance between 4.5 and 8.0 ohms [at 20° C (68° F)]?
 - YES : Go to Step 2.
 - **NO :** Replace the cylinder 2, 3 heated oxygen sensor (front). Then go to Step 3.

TSB Revision

STEP 2. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0052 set?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 3.
 - **NO :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 3. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0052 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0057: Cylinder 2, 3 Heated Oxygen Sensor Heater (rear) Control Circuit Low

Cylinder 2, 3 Heated Oxygen Sensor (rear) Heater Circuit

AK403977

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 2, 3 heated oxygen sensor (rear) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 137) controls continuity to the cylinder 2, 3 heated oxygen sensor (rear) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

• The ECM <M/T> or the PCM <A/T> checks whether the heater voltage is within a specified range when the heater is not energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 2, 3 heated oxygen sensor heater (rear) current or voltage is out of specified range.

MONITOR EXECUTION

Continuous

TSB Revision	
MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

DTC SET CONDITIONS

Logic Flow Chart

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

AK500450

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 2, 3 heated oxygen sensor (rear) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (rear) heater current has continued to be lower than 0.17 ampere for 2 seconds.

Check Conditions

• More than 2 seconds have passed since the engine starting sequence was completed.

13A-110 MULTIPORT FUEL INJ

- MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS
- While the cylinder 2, 3 heated oxygen sensor (rear) heater is off.
- Battery positive voltage is between 11 and 16.5 volts.

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (rear) heater voltage has continued to be lower than 2.0 volts for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

TROUBLESHOOTING HINTS (The most

likely causes for this code to be set are:)

- Open or shorted cylinder 2, 3 heated oxygen sensor (rear) heater circuit, or harness damage.
- Cylinder 2, 3 heated oxygen sensor (rear) heater failed.
- Connector damage failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MD998464: Test Harness
- MB991923: Power Plant ECU Check Harness

STEP 1. Check harness connector B-34 at the cylinder 2, 3 heated oxygen sensor (rear) for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 2.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

BLUE

MD998464

STEP 2. Check the cylinder 2, 3 heated oxygen sensor (rear).

(1) Disconnect cylinder 2, 3 heated oxygen sensor (rear) connector B-34 and connect test harness special tool, MD998464, to the connector on the cylinder 2, 3 heated oxygen (rear) sensor side.

- (2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).
 - Standard value: 11 18 ohms [at 20° C (68° F)]
- Q: Is the measured resistance between 11 and 18 ohms [at 20° C (68° F)]?
 - YES : Go to Step 3.
 - **NO :** Replace the cylinder 2, 3 heated oxygen sensor (rear). Then go to Step 12.

AKX01624 AU

STEP 3. Measure the power supply voltage at cylinder 2, 3 heated oxygen sensor (rear) harness side connector B-34.

- (1) Disconnect the connector B-34 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 4.

TSB Revision

AKX01498 BN

STEP 4. Check harness connector B-16X at the MFI relay for damage.

Q: Is the harness connector in good condition?

- YES : Repair harness wire between MFI relay connector B-16X (terminal No. 4) and cylinder 2, 3 heated oxygen sensor (rear) connector B-34 (terminal No. 1) because of open circuit or short circuit to ground. Then go to Step 12.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 5. Measure the power supply voltage at ECM <M/T> or PCM <A/T> connector B-22 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 137 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 8.
 - NO: Go to Step 6.

STEP 6. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 7.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 7. Check for open circuit or short circuit to ground between cylinder 2, 3 heated oxygen sensor (rear) connector B-34 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-22 (terminal No. 137).

Q: Is the harness wire in good condition?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

STEP 8. Check harness connector B-22 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 9. Check for harness damage between MFI relay connector B-16X (terminal No. 4) and cylinder 2, 3 heated oxygen sensor (rear) connector B-34 (terminal No. 1). Q: Is the harness wire in good condition?

- YES : Go to Step 10.
- **NO :** Repair it. Then go to Step 12.

Q: Is the harness wire in good condition?

- YES: Go to Step 11.
- **NO :** Repair it. Then go to Step 12.

STEP 11. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0057 set?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.
 - **NO :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 12. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0057 set?

- **YES :** Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0058: Cylinder 2, 3 Heated Oxygen Sensor Heater (rear) Control Circuit High

Cylinder 2, 3 Heated Oxygen Sensor (rear) Heater Circuit

AK403977

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- Power is supplied from the MFI relay (terminal No. 4) to the cylinder 2, 3 heated oxygen sensor (rear) heater.
- The ECM <M/T> or the PCM <A/T> (terminal No. 137) controls continuity to the cylinder 2, 3 heated oxygen sensor (rear) heater by turning the power transistor in the ECM <M/T> or the PCM <A/T> "ON" and "OFF".

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks whether the heater current is within a specified range when the heater is energized.

DESCRIPTIONS OF MONITOR METHODS

Cylinder 2, 3 heated oxygen sensor heater (rear) current is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

|--|

Sensor (The sensor below is determined to be normal)

• Engine coolant temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

Check Conditions

- More than 2 seconds have passed since the engine starting sequence was completed.
- While the cylinder 2, 3 heated oxygen sensor (rear) heater is on.
- Battery positive voltage is between 11 and 16.5 volts.

TSB Revision

Judgement Criterion

• The cylinder 2, 3 heated oxygen sensor (rear) heater current has continued to be higher than 10.5 ampere for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 2 P.13A-6.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

• Connector damage.

- Cylinder 2, 3 heated oxygen sensor (rear) failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tool:

• MD998464: Test Harness

STEP 1. Check the cylinder 2, 3 heated oxygen sensor (rear).

 Disconnect cylinder 2, 3 heated oxygen sensor (rear) connector B-34 and connect test harness special tool, MD998464, to the connector on the cylinder 2, 3 heated oxygen (rear) sensor side.

- (2) Measure the resistance between heated oxygen sensor connector terminal No. 1 (red clip) and terminal No. 3 (blue clip).
 - Standard value: 11 18 ohms [at 20° C (68° F)]
- Q: Is the measured resistance between 11 and 18 ohms [at 20° C (68° F)]?
 - YES : Go to Step 2.
 - **NO :** Replace the cylinder 2, 3 heated oxygen sensor (rear). Then go to Step 3.

TSB	Revision	

STEP 2. Check the trouble symptoms.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0058 set?
 - **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 3.
 - **NO**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

STEP 3. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 2 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0058 set?

- **YES :** Retry the troubleshooting.
- NO: The inspection is complete.

DTC P0069: Abnormal Correlation Between Manifold Absolute Pressure Sensor And Barometric Pressure Sensor

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> detects abnormality in the sensor by comparing the manifold absolute pressure sensor output with the barometric pressure sensor output.

DESCRIPTIONS OF MONITOR METHODS

The ECM <M/T> or the PCM <A/T> compares the manifold absolute pressure sensor output with the barometric pressure sensor output while the engine control relay is in "ON" position after the ignition switch is in "LOCK" (OFF) position. When the difference exceeds the specified value between them, the ECM <M/T> or the PCM <A/T> determines whether the manifold absolute pressure sensor / the barometric pressure sensor has malfunction or not.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

Check Conditions

- Ignition switch is in "LOCK" (OFF) position.
- After 2 seconds pass from the time when the engine is stopped.
- Engine coolant temperature is higher than 0° C (32° F).

Judgement Criterion

• Difference between manifold absolute pressure sensor output and barometric pressure sensor output is more than 9 kPa (2.7 in.Hg) for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

None.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

AK401533

- · Manifold absolute pressure sensor failed.
- Barometric pressure sensor failed.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB	Revision	

DIAGNOSIS

Required Special Tools

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, read the diagnostic trouble code (DTC).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958, read the DTC.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the diagnostic trouble code other than P0069 set?
 - **YES :** Refer to, Diagnostic Trouble Code Chart P.13A-41. **NO :** Go to Step 2.

STEP 2. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

- (1) Turn the ignition switch to the "ON" position.
- (2) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (3) Start the engine.
 - When the engine is idling, 16 –36 kPa (4.7 –10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : Go to Step 3.
- NO: Refer to, DTC P0106 –Manifold Absolute Pressure Circuit Range/Performance Problem P.13A-130, DTC P0107 –Manifold Absolute Pressure Circuit Low Input P.13A-141, DTC P0108 –Manifold Absolute Pressure Circuit High Input P.13A-151.

STEP 3. Using scan tool MB991958, read the diagnostic trouble code (DTC).

- (1) Turn the ignition switch to the "ON" position.
- (2) Erase the DTC.
- (3) Start the engine.
- (4) Turn the ignition switch to "LOCK" (OFF) position and then wait 2 seconds.
- (5) Turn the ignition switch to the "ON" position.
- (6) Set scan tool MB991958, read the DTC.
- (7) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is DTC P0069 set?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 4.
- NO: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.

	TSB	Revision
--	-----	----------

STEP 4. Using scan tool MB991958, read the diagnostic trouble code (DTC).

- (1) Turn the ignition switch to the "ON" position.
- (2) Erase the DTC.
- (3) Start the engine.
- (4) Turn the ignition switch to "LOCK" (OFF) position and then wait 2 seconds.
- (5) Turn the ignition switch to the "ON" position.
- (6) Set scan tool MB991958, read the DTC.
- (7) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is DTC P0069 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0101: Mass Airflow Circuit Range/Performance Problem

If DTC P0101 has been set, TCL related DTC U1120 is also set. After P0101 has been diagnosed, don't forget to erase DTC U1120.

Mass Airflow Sensor Circuit

ENGINE CONTROL MODULE (ECM) </br>

POWERTRAIN CONTROL MODULE (PCM) </br>

A/T>

TSB Revision	

CIRCUIT OPERATION

- The mass airflow sensor power is supplied from the MFI relay (terminal No. 4), and the ground is provided on the ECM <M/T> or the PCM <A/T> (terminal No. 69).
- A voltage that is according to the mass airflow rate is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 108) from the mass airflow sensor output terminal (terminal No. 3).

TECHNICAL DESCRIPTION

- While the engine is running, the mass airflow sensor outputs voltage which corresponds to the mass airflow rate.
- The ECM <M/T> or the PCM <A/T> checks whether the voltage output by the mass airflow sensor while the engine is running is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Compare load value with mass airflow sensor output voltage.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Throttle position sensor

DTC SET CONDITIONS <Range/Performance problem –high>

Logic Flow Chart

AK302006

Check Conditions

- Throttle position sensor output voltage is 1.0 volt or lower.
- Mass airflow sensor output voltage is 4.9 volts or lower.

Judgement Criterion

• Mass airflow sensor output voltage has continued to be 3.5 volts or higher for 2 seconds.

TSB R	evision
-------	---------

DIAGNOSIS

DTC SET CONDITIONS <Range/Performance problem -low >

Logic Flow Chart

AK401683

Check Conditions

- Throttle position sensor output voltage is 1.5 volts or higher.
- Mass airflow sensor output voltage is 0.2 volt or higher.

Judgement Criterion

• Mass airflow sensor output voltage has continued to be 1.8 volts or lower for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 7 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Mass airflow sensor failed.
- Mass airflow sensor circuit harness damage, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 10: Mass Airflow Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991958 to the data reading mode for item 10, Mass Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80° C to 95° C (176° F to 203° F).
 - The standard value during idling should be between 1,300 and 1,620 millivolts.
 - When the engine is revved, the mass airflow rate should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

STEP 2. Check harness connector B-09 at mass airflow sensor and harness connector B-16X at MFI relay for damage.

Q: Is the harness connector in good condition?

- YES: Go to Step 3.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

HARNESS () CONNECTOR:

COMPONENT SIDE

Λ][

B-09 (GR)

AK500110AB

STEP 3. Check for harness damage between MFI relay connector B-16X (terminal No. 4) and mass airflow sensor connector B-09 (terminal No. 2).

Q: Is the harness wire in good condition?

- YES : Go to Step 4.
- **NO :** Repair it. Then go to Step 9.

STEP 4. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 5.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 5. Check the continuity at mass airflow sensor harness side connector B-09.

- (1) Disconnect the connector B-09 and measure at the harness side.
- (2) Check for the continuity between terminal No. 4 and ground.
 - Should be less than 2 ohms.

Q: Does continuity exist?

- YES: Go to Step 6.
- NO: Repair harness wire between mass airflow sensor connector B-09 (terminal No. 4) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69) because of harness damage. Then go to Step 9.

TSB Revision

AK203028AF

STEP 6. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Go to Step 7.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 7. Check for harness damage between mass airflow sensor connector B-09 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 108). Q: Is the harness wire in good condition?

- YES : Go to Step 8.
- NO: Repair it. Then go to Step 9.

STEP 8. Replace the mass airflow sensor.

- (1) Replace the mass airflow sensor.
- (2) Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 7 P.13A-6.
- (3) Check the diagnostic trouble code (DTC).

Q: Is DTC P0101 set?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 9.
- **NO**: The inspection is complete.

TSB Revision	

STEP 9. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 7 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0101 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0102: Mass Airflow Circuit Low Input

If DTC P0102 has been set, TCL related DTC U1120 is also set. After P0102 has been diagnosed, don't forget to erase DTC U1120.

ENGINE CONTROL MODULE (ECM) </br>

POWERTRAIN CONTROL MODULE (PCM) </br>

A/T>

AK403677

TSB Revision	

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- The mass airflow sensor power is supplied from the MFI relay (terminal No. 4), and the ground is provided on the ECM <M/T> or the PCM <A/T> (terminal No. 69).
- A voltage that is according to the mass airflow rate is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 108) from the mass airflow sensor output terminal (terminal No. 3).

TECHNICAL DESCRIPTION

- While the engine is running, the mass airflow sensor outputs voltage which corresponds to the mass airflow rate.
- The ECM <M/T> or the PCM <A/T> checks whether the voltage output by the mass airflow sensor while the engine is running is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Mass airflow sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302008

Check Condition

 3 seconds or more have passed since the ignition switch was turned to "ON" position.

Judgement Criterion

• Mass airflow sensor output voltage has continued to be lower than 0.2 volt for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Mass airflow sensor failed.
- Open or shorted mass airflow sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

rsb	Revision
-----	----------

DIAGNOSIS

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991923: Power Plant ECU Check Harness

STEP 1. Using scan tool MB991958, check data list item 10: Mass Airflow Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991958 to the data reading mode for item 10, Mass Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80° C to 95° C (176° F to 203° F).
 - The standard value during idling should be between 1,300 and 1,620 millivolts.
 - When the engine is revved, the mass airflow rate should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

STEP 2. Check harness connector B-09 at mass airflow sensor for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB Revision

STEP 3. Measure the power supply voltage at mass airflow sensor harness side connector B-09.

- (1) Disconnect the connector B-09 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.
- (3) Measure the voltage between terminal No. 2 and ground.Voltage should be battery positive voltage.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is battery positive voltage (approximately 12 volts) present?
 - YES : Go to Step 5.
 - NO: Go to Step 4.

STEP 4. Check harness connector B-16X at MFI relay for damage.

Q: Is the harness connector in good condition?

- **YES :** Repair harness wire between MFI relay connector B-16X (terminal No. 4) and mass airflow sensor connector B-09 (terminal No. 2) because of open circuit or short circuit to ground. Then go to Step 11.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

ISB Revision

STEP 5. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 6.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 6. Measure the sensor output voltage at ECM <M/T> or PCM <A/T> connector B-21 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 108 and ground.
 - When the engine is revved, voltage should be increase in response to revving.
- Q: Is the measured voltage normal?
 - **YES :** Go to Step 9. **NO :** Go to Step 7.

STEP 7. Check for open circuit or short circuit to ground between mass airflow sensor connector B-09 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 108).

- Q: Is the harness wire in good condition?
 - **YES** : Replace the mass airflow sensor. Then go to Step 8.
 - **NO**: Repair it. Then go to Step 11.

HARNESS CONNECTOR: COMPONENT SIDE

AK500054AB

B-21 (B

STEP 8. Replace the mass airflow sensor.

- (1) Replace the mass airflow sensor.
- (2) Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (3) Check the diagnostic trouble code (DTC).
- Q: Is DTC P0102 set?
 - **YES** : Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
 - NO: The inspection is complete.

STEP 9. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 10.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 10.

TSB	Revision
-----	----------

STEP 10. Using scan tool MB991958, check data list item 10: Mass Airflow Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991958 to the data reading mode for item 10, Mass Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80° C to 95° C (176° F to 203° F).
 - The standard value during idling should be between 1,300 and 1,620 millivolts.
 - When the engine is revved, the mass airflow rate should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.

STEP 11. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0102 set?

- **YES** : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0103: Mass Airflow Circuit High Input

If DTC P0103 has been set, TCL related DTC U1120 is also set. After P0103 has been diagnosed, don't forget to erase DTC U1120.

ENGINE CONTROL MODULE (ECM) </br>

POWERTRAIN CONTROL MODULE (PCM) </br>

A/T>

TSB Revision	

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- The mass airflow sensor power is supplied from the MFI relay (terminal No. 4), and the ground is provided on the ECM <M/T> or the PCM <A/T> (terminal No. 69).
- A voltage that is according to the mass airflow rate is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 108) from the mass airflow sensor output terminal (terminal No. 3).

TECHNICAL DESCRIPTION

- While the engine is running, the mass airflow sensor outputs voltage which corresponds to the mass airflow rate.
- The ECM <M/T> or the PCM <A/T> checks whether the voltage output by the mass airflow sensor while the engine is running is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Mass airflow sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

Check Condition

 3 seconds or more have passed since the ignition switch was turned to "ON" position.

Judgement Criterion

 Mass airflow sensor output voltage has continued to be higher than 4.9 volts for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function -OBD-II Drive Cycle -Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- · Mass airflow sensor failed.
- · Open mass airflow sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 10: Mass Airflow Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991958 to the data reading mode for item 10, Mass Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80° C to 95° C (176° F to 203° F).
 - The standard value during idling should be between 1,300 and 1,620 millivolts.
 - When the engine is revved, the mass airflow rate should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

STEP 2. Check harness connector B-09 at mass airflow sensor for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 8.

TSB Revision

STEP 3. Check the continuity at mass airflow sensor harness side connector B-09.

- (1) Disconnect the connector B-09 and measure at the harness side.
- (2) Check for the continuity between terminal No. 4 and ground.
 - Should be less than 2 ohms.
- **Q: Does continuity exist?**
 - YES : Go to Step 7.
 - NO: Go to Step 4.

STEP 4. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 5.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 8.

TSB Revision

STEP 5. Check for open circuit between mass airflow sensor connector B-09 (terminal No. 4) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69). Q: Is the harness wire in good condition?

- YES : Go to Step 6.
- **NO**: Repair it. Then go to Step 8.

STEP 6. Using scan tool MB991958, check data list item 10: Mass Airflow Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Start the engine and run at idle.
- (3) Set scan tool MB991958 to the data reading mode for item 10, Mass Airflow Sensor.
- (4) Warm up the engine to normal operating temperature: 80° C to 95° C (176° F to 203° F).
 - The standard value during idling should be between 1,300 and 1,620 millivolts.
 - When the engine is revved, the mass airflow rate should increase according to the increase in engine speed.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES** : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 8.

STEP 7. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Replace the mass airflow sensor. Then go to Step 8.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 8.

TSB Revision

STEP 8. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0103 set?

- YES : Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0106: Manifold Absolute Pressure Circuit Range/Performance Problem

Manifold Absolute Pressure Sensor Circuit

CIRCUIT OPERATION

- A 5-volt voltage is supplied to the manifold absolute pressure sensor power terminal (terminal No. 3) from the ECM <M/T> or the PCM <A/T> (terminal No. 68). The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- A voltage that is proportional to the intake manifold pressure is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 102) from the manifold absolute pressure sensor output terminal (terminal No. 1).

TECHNICAL DESCRIPTION

- The manifold absolute pressure sensor outputs a voltage which corresponds to the intake manifold pressure.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Compare load value with manifold absolute pressure sensor output voltage.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

- Engine coolant temperature sensor
- Throttle position sensor
- Mass airflow sensor
- Intake air temperature sensor
- Barometric pressure sensor

DTC SET CONDITIONS <Range/Performance problem -high input>

Logic Flow Chart

AK401473

Check Conditions

- 8 minutes or more have passed since the engine starting sequence was completed, when the engine coolant temperature at engine start is 0° C (32° F) or lower.
- Engine speed is 1,500 r/min or lower.

• Throttle position sensor output voltage is 0.8 volt or lower.

Judgement Criterion

• Manifold absolute pressure is 89 kPa (26.3 in.Hg) or higher for 2 seconds.

TSB R	evision	

DTC SET CONDITIONS <Range/Performance problem -low input>

Logic Flow Chart

AK401474

Check Conditions

- 8 minutes or more have passed since the engine starting sequence was completed, when the engine coolant temperature at engine start is 0° C (32° F) or lower.
- Engine speed is 1,500 r/min or higher.
- Throttle position sensor output voltage is 3.5 volts or higher.

Judgement Criterion

• Manifold absolute pressure is 45 kPa (13.3 in.Hg) or lower for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 7 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Manifold absolute pressure sensor failed.
- Harness damage.
- Connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991923: Power Plant ECU Check Harness

STEP 1. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (4) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

- (1) Do not disconnect the connector B-02.
- (2) Turn the ignition switch to the "ON" position.

- (3 B-02 HARNESS CONNECTOR: HARNESS SIDE
- (3) Measure the voltage between terminal No. 1 and ground by backprobing.
 - When altitude is 0 m (0 foot), voltage should be 3.7 and 4.3 volts.
 - When altitude is 600 m (1,969 feet), voltage should be 3.4 and 4.0 volts.
 - When altitude is 1,200 m (3,937 feet), voltage should be 3.2 and 3.8 volts.
 - When altitude is 1,800 m (5,906 feet), voltage should be 2.9 and 3.5 volts.
 - (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage normal?

- YES : Go to Step 10.
- NO: Go to Step 3.

STEP 3. Measure the sensor supply voltage at manifold absolute pressure sensor connector B-02 by backprobing.

- (1) Do not disconnect the connector B-02.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 3 and ground by backprobing.
 - Voltage should be between 4.9 and 5.1 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.9 and 5.1 volts?
 - YES : Go to Step 6.
 - **NO :** Go to Step 4.

CONNECTOR: B-02 SC MANIFOLD **ABSOLUTE** PRESSURE SENSOR 6 B-02 (B)≷ joji 1 HARNESS ALL CONNECTOR: COMPONENT SIDE AK500112AB **CONNECTOR: B-20** N ECM <M/T> OR PCM <A/T> S te AIR CLEANER B-20 (B) HARNESS CONNECTOR: COMPONENT SIDE AK500053AB

STEP 4. Check harness connector B-02 at the manifold absolute pressure sensor and harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to step 5.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 5. Check for harness damage between manifold absolute pressure sensor connector B-02 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 68).

- Q: Is the harness wire in good condition?
 - YES : Go to Step 12.
 - **NO :** Repair it. Then go to Step 13.

AK203038AG

3

STEP 6. Measure the ground voltage at manifold absolute pressure sensor connector B-02 by backprobing.

- (1) Do not disconnect the connector B-02.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 2 and ground by backprobing.
 - Voltage should be 0.5 volt or less.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage 0.5 volt or less?
 - YES : Go to Step 9.
 - NO: Go to Step 7.

STEP 7. Check harness connector B-02 at the manifold absolute pressure sensor and harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES: Go to Step 8.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 8. Check for harness damage between manifold absolute pressure sensor connector B-02 (terminal No. 2) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69).

- Q: Is the harness wire in good condition?
 - YES : Go to Step 12.
 - **NO :** Repair it. Then go to Step 13.

STEP 9. Check harness connector B-02 at manifold absolute pressure sensor for damage.

- Q: Is the harness connector in good condition?
 - **YES :** Replace the manifold absolute pressure sensor. Then go to Step 13.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

CONNECTOR: B-02 SC YES: Go to Step 11. MANIFOLD **ABSOLUTE** PRESSURE SENSOR 6 B-02 (B)≷ 到 Ŋ, 7

STEP 10. Check harness connector B-02 at the manifold absolute pressure sensor and harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

NO: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 13.

STEP 11. Measure the sensor output voltage at ECM <M/T> or PCM <A/T> connector B-21 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

TSB Revision

AK500077AB

(3) Measure the voltage between terminal No. 102 and ground.

- When altitude is 0 m (0 foot), voltage should be 3.7 and 4.3 volts.
- When altitude is 600 m (1,969 feet), voltage should be 3.4 and 4.0 volts.
- When altitude is 1,200 m (3,937 feet), voltage should be 3.2 and 3.8 volts.
- When altitude is 1,800 m (5,906 feet), voltage should be 2.9 and 3.5 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage normal?

- YES : Go to Step 12.
- NO: Repair harness wire between manifold absolute pressure sensor connector B-02 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 102) because of harness damage. Then go to Step 13.

STEP 12. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

- (1) Turn the ignition switch to the "ON" position.
- (2) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (3) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 –10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 13.

STEP 13. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 7 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0106 set?

- **YES :** Retry the troubleshooting.
- NO: The inspection is complete.

DTC P0107: Manifold Absolute Pressure Circuit Low Input

Manifold Absolute Pressure Sensor Circuit

|--|

CIRCUIT OPERATION

- A 5-volt voltage is supplied to the manifold absolute pressure sensor power terminal (terminal No. 3) from the ECM <M/T> or the PCM <A/T> (terminal No. 68). The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- A voltage that is proportional to the intake manifold pressure is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 102) from the manifold absolute pressure sensor output terminal (terminal No. 1).

TECHNICAL DESCRIPTION

- The manifold absolute pressure sensor outputs a voltage which corresponds to the intake manifold pressure.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Manifold absolute pressure sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

- Engine coolant temperature sensor
- Throttle position sensor
- Mass airflow sensor
- Intake air temperature sensor
- Barometric pressure sensor

DTC SET CONDITIONS

Logic Flow Chart

AK302011

Check Conditions

- 8 minutes or more have passed since the engine starting sequence was completed, when the engine coolant temperature at engine start is 0° C (32° F) or lower.
- Volumetric efficiency is higher than 20 percent.

Judgement Criterion

 Manifold absolute pressure is 5 kPa (1.5 in.Hg) or lower for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 7 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- · Manifold absolute pressure sensor failed.
- Open or shorted manifold absolute pressure sensor circuit, harness damage or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB	Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991923: Power Plant ECU Check Harness

STEP 1. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 8, Manifold absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (4) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

B-02 HARNESS CONNECTOR: HARNESS SIDE

STEP 2. Measure the sensor supply voltage at manifold absolute pressure sensor connector B-02 by backprobing.

- (1) Do not disconnect the connector B-02.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 3 and ground by backprobing.
 - Voltage should be between 4.9 and 5.1 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.9 and 5.1 volts?
 - YES: Go to Step 8.
 - NO: Go to Step 3.

STEP 3. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revision

STEP 4. Measure the sensor supply voltage at ECM <M/T> or PCM <A/T> connector B-20 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 68 and ground.Voltage should be between 4.9 and 5.1 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.9 and 5.1 volts? YES : Go to Step 7.
 - **NO**: Go to Step 5.

STEP 5. Check harness connector B-02 at the manifold absolute pressure sensor for damage. Q: Is the connector in good condition?

- YES : Go to Step 6.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 6. Check for short circuit to ground between manifold absolute pressure sensor connector B-02 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 68).

- Q: Is the harness wire in good condition?
 - YES : Go to Step 11.
 - **NO :** Repair it. Then go to Step 12.

CONNECTOR: B-02

STEP 7. Check harness connector B-02 at the manifold absolute pressure sensor for damage.

Q: Is the connector in good condition?

- YES : Repair harness wire between manifold absolute pressure sensor connector B-02 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 68) because of open circuit. Then go to Step 12.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

TSB Revisio	n

CONNECTOR: B-02 SC MANIFOLD **ABSOLUTE** PRESSURE SENSOR 6 B-02 (B)≷ joji 1 HARNESS ALL CONNECTOR: COMPONENT SIDE AK500112AB **CONNECTOR: B-21** N ECM <M/T> OR PCM <A/T> S te AIR CLEANER B-21 (B) HARNESS CONNECTOR: COMPONENT SIDE AK500054AB

STEP 8. Check harness connector B-02 at the manifold absolute pressure sensor and connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 12.

STEP 9. Measure the sensor output voltage at ECM <M/T> or PCM <A/T> connector B-21 by using power plant ECU check harness special tool MB991923.

- Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Turn the ignition switch to the "ON" position.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (3) Measure the voltage between terminal No. 102 and ground.
 - When altitude is 0 m (0 foot), voltage should be 3.7 and 4.3 volts.
 - When altitude is 600 m (1,969 feet), voltage should be 3.4 and 4.0 volts.
 - When altitude is 1,200 m (3,937 feet), voltage should be 3.2 and 3.8 volts.
 - When altitude is 1,800 m (5,906 feet), voltage should be 2.9 and 3.5 volts.

(4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage normal?

- YES : Go to Step 11.
- NO: Go to Step 10.

STEP 10. Check for open or short circuit to ground between manifold absolute pressure sensor connector B-02 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 102).

Q: Is the harness wire in good condition?

- **YES :** Replace the manifold absolute pressure sensor. Then go to Step 12.
- **NO :** Repair it. Then go to Step 12.

TSB	Revision

STEP 11. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

- (1) Turn the ignition switch to the "ON" position.
- (2) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (3) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 –10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 12.

STEP 12. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 7 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0107 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0108: Manifold Absolute Pressure Circuit High Input

Manifold Absolute Pressure Sensor Circuit

CIRCUIT OPERATION

- A 5-volt voltage is supplied to the manifold absolute pressure sensor power terminal (terminal No. 3) from ECM <M/T> or PCM <A/T> (terminal No. 68). The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- A voltage that is proportional to the intake manifold pressure is sent to the ECM <M/T> or the PCM <A/T> (terminal No. 102) from the manifold absolute pressure sensor output terminal (terminal No. 1).

TECHNICAL DESCRIPTION

- The manifold absolute pressure sensor outputs a voltage which corresponds to the intake manifold pressure.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Manifold absolute pressure sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

- Engine coolant temperature sensor
- Throttle position sensor
- · Mass airflow sensor
- Intake air temperature sensor
- Barometric pressure sensor

DTC SET CONDITIONS

Logic Flow Chart

AK302011

Check Condition

 8 minutes or more have passed since the engine starting sequence was completed, when the engine coolant temperature at engine start is 0° C (32° F) or lower.

Judgement Criterion

 Manifold absolute pressure is higher than 117 kPa (34.6 in.Hg) for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Manifold absolute pressure sensor failed.
- Open manifold absolute pressure sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB	Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (4) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

AK203038AG

3

STEP 2. Measure the ground voltage at manifold absolute pressure sensor connector B-02 by backprobing.

- (1) Do not disconnect the connector B-02.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 2 and ground by backprobing.
 - Voltage should be 0.5 volt or less.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage 0.5 volt or less?
 - YES : Go to Step 6.
 - NO: Go to Step 3.

STEP 3. Check harness connector B-02 at the manifold absolute pressure sensor and harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES: Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 7.

CONNECTOR: B-02 SC MANIFOLD **ABSOLUTE** PRESSURE SENSOR 6 B-02 (B)≷ 到 DI HARNESS ALL CONNECTOR: COMPONENT SIDE AK500112AB **CONNECTOR: B-20** ~ W ECM <M/T> OR PCM <A/T> S Î Ľ AIR CLEANER B-20 (B) HARNESS CONNECTOR: COMPONENT SIDE AK500053AB

STEP 4. Check for open circuit between manifold absolute pressure sensor connector B-02 (terminal No. 2) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69). Q: Is the harness wire in good condition?

- YES : Go to Step 5.
- NO: Repair it. Then go to Step 7.

STEP 5. Using scan tool MB991958, check data list item 8: Manifold Absolute Pressure Sensor.

- (1) Turn the ignition switch to the "ON" position.
- (2) Set scan tool MB991958 to the data reading mode for item 8, Manifold Absolute Pressure Sensor.
 - When altitude is 0 m (0 foot), 101 kPa (29.8 in.Hg).
 - When altitude is 600 m (1,969 feet), 95 kPa (28.1 in.Hg).
 - When altitude is 1,200 m (3,937 feet), 88 kPa (26.0 in.Hg).
 - When altitude is 1,800 m (5,906 feet), 81 kPa (23.9 in.Hg).
- (3) Start the engine.
 - When the engine is idling, 16 36 kPa (4.7 –10.6 in.Hg).
 - When the engine is suddenly revved, manifold absolute pressure varies.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to
- Cope with Intermittent Malfunctions P.00-14.
 NO: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 7.

STEP 6. Check harness connector B-02 at the manifold absolute pressure sensor and harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the manifold absolute pressure sensor. Then go to Step 7.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 7.

STEP 7. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0108 set?

- **YES** : Retry the troubleshooting.
- **NO :** The inspection is complete.

ACAUTION If DTC P0111 has been set, TCL related DTC U1120 is also set. After P0111 has been diagnosed, don't forget to erase DTC U1120.

CIRCUIT OPERATION

- Approximately 5 volts are applied to the intake air temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 107) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 4) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The intake air temperature sensor is a negative temperature coefficient type of resistor. When the intake air temperature rises, the resistance decreases.
- The intake air temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

- The intake air temperature sensor converts the intake air temperature to a voltage.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Intake air temperature sensor output voltage does not change when specified go/stop operations are repeated.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302012

Check Conditions

- Engine coolant temperature is higher than 76° C (169° F).
- Repeat 2 or more times: drive^{*1}, stop^{*2}.
 Drive^{*1}: vehicle speed higher than 50 km/h (31 mph) lasting a total of more than 60 seconds.
 - Stop^{*2}: vehicle speed lower than 1.5 km/h (1.0 mph) lasting more than 30 seconds.

Judgement Criterion

 Changes in the intake air temperature is lower than 1°C (1.8°F).

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 8 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Intake air temperature sensor failed.
- Open intake air temperature sensor circuit, harness damage or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB Revision

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 5: Intake Air Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Remove the mass airflow sensor from the air intake hose.
- (3) Turn the ignition switch to the "ON" position.
- (4) Set scan tool MB991958 to the data reading mode for item 5, Intake Air Temperature Sensor.

- (5) Heating the sensor using a hair drier.
 - The indicated temperature increases.

NOTE: Do not allow it to increase over 80°C (176°F).

- (6) Turn the ignition switch to the "LOCK" (OFF) position.
- (7) Attach the mass airflow sensor.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

TSB Revision	
--------------	--

INTAKE AIR TEMPERATURE SENSOR CONNECTOR

- STEP 2. Check the intake air temperature sensor.
- (1) Disconnect the intake air temperature sensor connector B-09.

(2) Measure the resistance between intake air temperature sensor side connector terminal No. 1 and No. 4.

AK203041AB

(3) Measure resistance while heating the sensor using a hair drier.

Standard value:

 $\begin{array}{l} 13-17 \ k\Omega \left[at -20^{\circ} C \ (-4^{\circ} F) \right] \\ 5.3-6.7 \ k\Omega \left[at \ 0^{\circ} C \ (32^{\circ} F) \right] \\ 2.3-3.0 \ k\Omega \left[at \ 20^{\circ} C \ (68^{\circ} F) \right] \\ 1.0-1.5 \ k\Omega \left[at \ 40^{\circ} C \ (104^{\circ} F) \right] \\ 0.56-0.76 \ k\Omega \left[at \ 60^{\circ} C \ (140^{\circ} F) \right] \\ 0.30-0.45 \ k\Omega \left[at \ 80^{\circ} C \ (176^{\circ} F) \right] \end{array}$

- Q: Is the measured resistance at the standard value?
 - YES : Go to Step 3.
 - NO: Replace the mass airflow sensor. Then go to Step 9.

STEP 3. Check harness connector B-09 at the intake air temperature sensor for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

|--|

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> **MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS**

AK203028AF

TSB Revision

perature

(1) Disconnect the connector B-09 and measure at the harness side.

- (2) Check for the continuity between terminal No. 4 and ground.
 - Should be less than 2 ohms.

Q: Does continuity exist?

- YES: Go to Step 7.
- NO: Go to Step 5.

STEP 5. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 6.
- **NO:** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 4. Check the continuity at intake air t	em
sensor harness side connector B-09	

STEP 6. Check for open circuit and harness damage between intake air temperature sensor connector B-09 (terminal No. 4) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69).

- Q: Is the harness wire in good condition?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 9.
 - **NO:** Repair it. Then go to Step 9.

STEP 7. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 8.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 8. Check for open circuit and harness damage between intake air temperature sensor connector B-09 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 107).

- Q: Is the harness wire in good condition?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 9.
 - **NO:** Repair it. Then go to Step 9.

STEP 9. Test the OBD-II drive cycle.

- (1) Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 8 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0111 set?

- YES : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0112: Intake Air Temperature Circuit Low Input

If DTC P0112 has been set, TCL related DTC U1120 is also set. After P0112 has been diagnosed, don't forget to erase DTC U1120.

Intake Air Temperature Sensor Circuit

CIRCUIT OPERATION

- Approximately 5 volts are applied to the intake air temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 107) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 4) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The intake air temperature sensor is a negative temperature coefficient type of resistor. When the intake air temperature rises, the resistance decreases.
- The intake air temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

- The intake air temperature sensor converts the intake air temperature to a voltage.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Intake air temperature sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302013

Check Condition

• 2 seconds or more have passed since the engine starting sequence was completed.

Judgement Criterion

 Intake air temperature sensor output voltage has continued to be 0.2 volt or lower [corresponding to an air intake temperature of 115° C (239° F) or higher] for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Intake air temperature sensor failed.
- Shorted intake air temperature sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 5: Intake Air Temperature Sensor.

DATA LINK

MB991910-

AK500051AB

MB991824

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 5, Intake Air Temperature Sensor.
 - The intake air temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

MB991827

STEP 2. Check harness connector B-09 at the intake air temperature sensor for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 6.

STEP 3. Check the intake air temperature sensor.

(1) Disconnect the intake air temperature sensor connector B-09.

- (2) Measure the resistance between intake air temperature sensor side connector terminal No. 1 and No. 4.
 - There should be continuity. (0.30 20 k Ω)
- **Q:** Is the measured resistance between 0.30 and 20 k Ω ? **YES :** Go to Step 4.
 - **NO**: Replace the mass airflow sensor. Then go to Step 6.

Q: Is the harness wire in good condition?

- YES : Go to Step 5.
- **NO :** Repair it. Then go to Step 6.

STEP 5. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 6.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 6.

STEP 6. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0112 set?

- **YES** : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0113: Intake Air Temperature Circuit High Input

If DTC P0113 has been set, TCL related DTC U1120 is also set. After P0113 has been diagnosed, don't forget to erase DTC U1120.

Intake Air Temperature Sensor Circuit

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

CIRCUIT OPERATION

- Approximately 5 volts are applied to the intake air temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 107) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 4) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The intake air temperature sensor is a negative temperature coefficient type of resistor. When the intake air temperature rises, the resistance decreases.
- The intake air temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

• The intake air temperature sensor converts the intake air temperature to a voltage.

• The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Intake air temperature sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302013

Check Condition

• 2 seconds or more have passed since the engine starting sequence was completed.

Judgement Criterion

 Intake air temperature sensor output voltage has continued to be 4.6 volts or higher [corresponding to an air intake temperature of -40° C (-40° F) or lower] for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Intake air temperature sensor failed.
- Open intake air temperature sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991923: Power Plant ECU Check Harness

STEP 1. Using scan tool MB991958, check data list item 5: Intake Air Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 5, Intake Air Temperature Sensor.
 - The intake air temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the sensor operating properly?
 - YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
 - NO: Go to Step 2.

DATA LINK CONNECTOR

CONNECTOR: B-09 B-09 (GR) 4 3 2 1 HARNESS CONNECTOR: COMPONENT SIDE

STEP 2. Check harness connector B-09 at the intake air temperature sensor for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB Revision	

- STEP 3. Check the intake air temperature sensor.
- (1) Disconnect the intake air temperature sensor connector B-09.

INTAKE AIR TEMPERATURE SENSOR CONNECTOR

CONNECTOR: B-09

2 🛴 1 🛽

- (2) Measure the resistance between intake air temperature sensor side connector terminal No. 1 and No. 4.
 - There should be continuity. (0.30 –20 k Ω)
- **Q:** Is the measured resistance between 0.30 and 20 k Ω ? **YES :** Go to Step 4.
 - **NO**: Replace the mass airflow sensor. Then go to Step 11.

STEP 4. Measure the sensor supply voltage at intake air temperature sensor harness side connector B-09.

- (1) Disconnect the connector B-09 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

B-09 (GR)

- (3) Measure the voltage between terminal No. 1 and ground.Voltage should be between 4.5 and 4.9 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.5 and 4.9 volts?
 - YES : Go to Step 8.
 - NO: Go to Step 5.

STEP 5. Measure the sensor supply voltage at ECM <M/T> or PCM <A/T> connector B-21 by using power plant ECU check harness special tool MB991923.

- (1) Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Disconnect the intake air temperature sensor connector B-09.
- (3) Turn the ignition switch to the "ON" position.

TSB Revision

AK500077AB

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (4) Measure the voltage between terminal No. 107 and ground.Voltage should be between 4.5 and 4.9 volts.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.5 and 4.9 volts?
 - YES : Go to Step 6. NO : Go to Step 7.

STEP 6. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES: Repair harness wire between intake air temperature sensor connector B-09 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 107) because of open circuit. Then go to Step 11.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB	Revision

STEP 7. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 8. Check the continuity at intake air temperature sensor harness side connector B-09.

(1) Disconnect the connector B-09 and measure at the harness side.

B-09 (GR)

CONNECTOR: B-09

- (2) Check for the continuity between terminal No. 4 and ground.
 - Should be less than 2 ohms.

Q: Does continuity exist?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- NO: Go to Step 9.

TSB Revision	

STEP 9. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 10.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

CONNECTOR: B-09 B-09 (GR) 1 HARNESS CONNECTOR: COMPONENT SIDE AK500110AB **CONNECTOR: B-20** ECM <M/T> OR PCM <A/T> 2. **AIR CLEANER** B-20 (B) HARNESS CONNECTOR: COMPONENT SIDE AK500053AB STEP 10. Check for open circuit between intake air temperature sensor connector B-09 (terminal No. 4) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69).

- Q: Is the harness wire in good condition?
 - **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
 - NO: Repair it. Then go to Step 11.

STEP 11. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0113 set?

- YES : Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0116: Engine Coolant Temperature Circuit Range/Performance Problem

ACAUTION If DTC P0116 has been set, TCL related DTC U1120 is also set. After P0116 has been diagnosed, don't forget to erase DTC U1120.

CIRCUIT OPERATION

- 5-volt voltage is applied to the engine coolant temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 93) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The engine coolant temperature sensor is a negative temperature coefficient type of resistor. It has the characteristic that when the engine coolant temperature rises the resistance decreases.
- The engine coolant temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

- The engine coolant temperature sensor converts the engine coolant temperature to a voltage and outputs it.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Engine coolant temperature sensor output voltage does not change for specified period when engine coolant temperature sensor output voltage at engine start is over 7° C (45° F).

MONITOR EXECUTION

Once per driving cycle

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

- · Mass airflow sensor
- Engine coolant temperature sensor
- Intake air temperature sensor

DTC SET CONDITIONS

Logic Flow Chart

AK402381

Check Condition

• Engine coolant temperature was 7° C (45° F) or more when the engine started.

Judgement Criteria

- Engine coolant temperature fluctuates within 1° C (1.8° F) after 5 minutes have passed since the engine was started.
- However, time is not counted if any of the following conditions are met.

- 1. Intake air temperature is 60° C (140° F) or more.
- 2. During fuel shut-off operation.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 9 P.13A-6.

TSB Revision	

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

TROUBLESHOOTING HINTS (The most

likely causes for this code to be set are:)

- Engine coolant temperature sensor failed.
- Harness damage or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 6: Engine Coolant Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

(1) Connect scan tool MB991958 to the data link connector.

- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 6, Engine Coolant Temperature Sensor.
 - The engine coolant temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

ISB	Revision	

STEP 2. Check the engine coolant temperature sensor.

- (1) Disconnect the engine coolant temperature sensor connector B-106.
- (2) Remove the engine coolant temperature sensor.

KX01622

Standard value: 14 – 17 kΩ [at –20° C (–4° F)] 5.1 – 6.5 kΩ [at 0° C (32° F)] 2.1 – 2.7 kΩ [at 20° C (68° F)] 0.9 – 1.3 kΩ [at 40° C (104° F)]

- $0.48 0.68 \text{ k}\Omega [\text{at } 60^{\circ}\text{C} (140^{\circ}\text{F})]$
- 0.26 0.36 k Ω [at 80° C (176° F)]
- (4) Apply 3M[™] AAD part number 8731 or equivalent on the screw section of the engine coolant temperature sensor.
- (5) Install the engine coolant temperature sensor, and tighten to the specified torque.

Tightening torque: 30 \pm 9 N· m (22 \pm 7 ft-lb)

- Q: Is the measured resistance at the standard value?
 - YES : Go to Step 3.
 - **NO :** Replace the engine coolant temperature sensor. Then go to Step 9.

STEP 3. Check harness connector B-106 at the engine coolant temperature sensor for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 4.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 4. Check the continuity at engine coolant temperature sensor harness side connector B-106.

(1) Disconnect the connector B-106 and measure at the harness side.

- B-106 HARNESS CONNECTOR: COMPONENT SIDE
- (2) Check for the continuity between terminal No. 2 and ground.
 - Should be less than 2 ohms.
- **Q: Does continuity exist?**
 - YES : Go to Step 7.
 - NO: Go to Step 5.

STEP 5. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 6.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

TSB Revision	
--------------	--

STEP 6. Check for harness damage between engine coolant temperature sensor connector B-106 (terminal No. 2) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69).

- Q: Is the harness wire in good condition?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 9.
 - **NO:** Repair it. Then go to Step 9.

STEP 7. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 8.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 9.

STEP 8. Check for harness damage between engine coolant temperature sensor connector B-106 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 93).

- Q: Is the harness wire in good condition?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 9.
 - **NO**: Repair it. Then go to Step 9.

STEP 9. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 9 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0116 set?

- YES : Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0117: Engine Coolant Temperature Circuit Low Input

A CAUTION If DTC P0117 has been set, TCL and air conditioner related DTC U1120 is also set. After P0117 has been diagnosed, don't forget to erase DTC U1120.

ENGINE CONTROL MODULE (ECM) </br>POWERTRAIN CONTROL MODULE (PCM) A/T>

AK403680

TSB Revision	

CIRCUIT OPERATION

- 5-volt voltage is applied to the engine coolant temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 93) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The engine coolant temperature sensor is a negative temperature coefficient type of resistor. It has the characteristic that when the engine coolant temperature rises the resistance decreases.
- The engine coolant temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

- The engine coolant temperature sensor converts the engine coolant temperature to a voltage and outputs it.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Engine coolant temperature sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable.

DTC SET CONDITIONS

Logic Flow Chart

AK302015

Check Condition

• 2 seconds or more have passed since the engine starting sequence was completed.

Judgement Criterion

 Engine coolant temperature sensor output voltage has continued to be 0.1 volt or lower [corresponding to coolant temperature of 140° C (284° F) or higher] for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Engine coolant temperature sensor failed.
- Shorted engine coolant temperature sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

TSB	Revision	

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 6: Engine Coolant Temperature Sensor.

DATA LINK

MB991910-

AK500051AB

MB991824

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 6, Engine Coolant Temperature Sensor.
 - The engine coolant temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

MB991827

STEP 2. Check harness connector B-106 at the engine coolant temperature sensor for damage.

- **Q**: Is the harness connector in good condition?
 - YES : Go to Step 3.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 6.

TSB Revision	
--------------	--

STEP 3. Check for short circuit to ground between engine coolant temperature sensor connector B-106 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 93).

- Q: Is the harness wire in good condition?
 - YES: Go to Step 4.
 - **NO :** Repair it. Then go to Step 6.

CONNECTOR: B-21 ECM <MT> OR PCM <AT> AIR CLEANER B-21 (B) ECM STATES CONNECTOR: COMPONENT SIDE AK500054AB

STEP 4. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 5.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 6.

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

AKX01622

STEP 5. Check the engine coolant temperature sensor.

- (1) Disconnect the engine coolant temperature sensor connector B-106.
- (2) Remove the engine coolant temperature sensor.

(3) With the temperature sensing portion of engine coolant temperature sensor immersed in hot water, check resistance.

Standard value:

 $\begin{array}{l} 14-17 \ k\Omega \left[at \ -20^{\circ} C \ (-4^{\circ} F)\right] \\ 5.1-6.5 \ k\Omega \left[at \ 0^{\circ} C \ (32^{\circ} F)\right] \\ 2.1-2.7 \ k\Omega \left[at \ 20^{\circ} C \ (68^{\circ} F)\right] \\ 0.9-1.3 \ k\Omega \left[at \ 40^{\circ} C \ (104^{\circ} F)\right] \\ 0.48-0.68 \ k\Omega \left[at \ 60^{\circ} C \ (140^{\circ} F)\right] \\ 0.26-0.36 \ k\Omega \left[at \ 80^{\circ} C \ (176^{\circ} F)\right] \end{array}$

- (4) Apply 3M[™] AAD part number 8731 or equivalent on the screw section of the engine coolant temperature sensor.
- (5) Install the engine coolant temperature sensor, and tighten to the specified torque.

Tightening torque: 30 \pm 9 N $\cdot\,$ m (22 \pm 7 ft-lb)

Q: Is the measured resistance at the standard value?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 6.
- **NO :** Replace the engine coolant temperature sensor. Then go to Step 6.

STEP 6. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0117 set?

- **YES :** Retry the troubleshooting.
- NO: The inspection is complete.

DTC P0118: Engine Coolant Temperature Circuit High Input

A CAUTION If DTC P0118 has been set, TCL and air conditioner related DTC U1120 is also set. After P0118 has been diagnosed, don't forget to erase DTC U1120.

ENGINE CONTROL MODULE (ECM) <M/T> OR POWERTRAIN CONTROL MODULE (PCM) <A/T>

AK403680

TSB Revision	

CIRCUIT OPERATION

- 5-volt voltage is applied to the engine coolant temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 93) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The engine coolant temperature sensor is a negative temperature coefficient type of resistor. It has the characteristic that when the engine coolant temperature rises the resistance decreases.
- The engine coolant temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

 The engine coolant temperature sensor converts the engine coolant temperature to a voltage and outputs it. • The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Engine coolant temperature sensor output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

AK302015

Check Condition

• 2 seconds or more have passed since the engine starting sequence was completed.

Judgement Criterion

 Engine coolant temperature sensor output voltage has continued to be 4.6 volts or higher [corresponding to coolant temperature of -45° C (-49° F) or lower] for 2 seconds.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function-OBD-II Drive Cycle-Pattern 22 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Engine coolant temperature sensor failed.
- Open engine coolant temperature sensor circuit, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991923: Power Plant ECU Check Harness

STEP 1. Using scan tool MB991958, check data list item 6: Engine Coolant Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 6, Engine Coolant Temperature Sensor.
 - The engine coolant temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

STEP 2. Check harness connector B-106 at the engine coolant temperature sensor for damage. Q: Is the harness connector in good condition?

- YES : Go to Step 3.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB Revision	

AK000234 AV

STEP 3. Measure the sensor supply voltage at engine coolant temperature sensor harness side connector B-106.

- (1) Disconnect the connector B-106 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.
 - Voltage should be between 4.5 and 4.9 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage between 4.5 and 4.9 volts?

YES: Go to Step 7. **NO**: Go to Step 4.

POWER PLANT ECU

CHECK HARNESS CONNECTOR

STEP 4. Measure the sensor supply voltage at ECM <M/T> or PCM <A/T> connector B-21 by using power plant ECU check harness special tool MB991923.

- (1) Disconnect all ECM <M/T> connectors or PCM <A/T> connectors. Connect the power plant ECU check harness special tool MB991923 between the separated connectors.
- (2) Disconnect the engine coolant temperature sensor connector B-106.
- (3) Turn the ignition switch to the "ON" position.

TSB Revision

AK500077AB

MULTIPORT FUEL INJECTION (MFI) <2.4L ENGINE> MULTIPORT FUEL INJECTION (MFI) DIAGNOSIS

- (4) Measure the voltage between terminal No. 93 and ground.Voltage should be between 4.5 and 4.9 volts.
- (5) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.5 and 4.9 volts?
 - **YES :** Go to Step 5. **NO :** Go to Step 6.

STEP 5. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Repair harness wire between engine coolant temperature sensor connector B-106 (terminal No. 1) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 93) because of open circuit. Then go to Step 11.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 6. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 7. Check the continuity at engine coolant temperature sensor harness side connector B-106. (1) Disconnect the connector B-106 and measure at the

- CONNECTOR: B-106 (1) Disco harne
- B-106 HARNESS CONNECTOR: COMPONENT SIDE B-106 HARNESS CONNECTOR: COMPONENT SIDE
- (1) Disconnect the connector B-106 and measure at the harness side.

- (2) Check for the continuity between terminal No. 2 and ground.
 - Should be less than 2 ohms.
- Q: Does continuity exist?
 - **YES :** Go to Step 10. **NO :** Go to Step 8.

TSB Revision

AK000235 AT

STEP 8. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 9.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 9. Check for open circuit between engine coolant sensor connector B-106 (terminal No. 2) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69). Q: Is the harness wire in good condition?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- **NO :** Repair it. Then go to Step 11.

STEP 10. Check the engine coolant temperature sensor.

- Disconnect the engine coolant temperature sensor connector B-106.
- (2) Remove the engine coolant temperature sensor.

AKX01622

(3) With the temperature sensing portion of engine coolant temperature sensor immersed in hot water, check resistance.

Standard value:

 $\begin{array}{l} 14-17 \ k\Omega \left[at \ -20^{\circ} C \ (-4^{\circ} \ F)\right] \\ 5.1-6.5 \ k\Omega \left[at \ 0^{\circ} C \ (32^{\circ} \ F)\right] \\ 2.1-2.7 \ k\Omega \left[at \ 20^{\circ} C \ (68^{\circ} \ F)\right] \\ 0.9-1.3 \ k\Omega \left[at \ 40^{\circ} C \ (104^{\circ} \ F)\right] \\ 0.48-0.68 \ k\Omega \left[at \ 60^{\circ} C \ (140^{\circ} \ F)\right] \\ 0.26-0.36 \ k\Omega \left[at \ 80^{\circ} C \ (176^{\circ} \ F)\right] \end{array}$

- (4) Apply 3M[™] AAD part number 8731 or equivalent on the screw section of the engine coolant temperature sensor.
- (5) Install the engine coolant temperature sensor, and tighten to the specified torque.

Tightening torque: 30 \pm 9 N \cdot m (22 ±7 ft-lb)

Q: Is the measured resistance at the standard value?

- **YES :** Replace the ECM or he PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- **NO :** Replace the engine coolant temperature sensor. Then go to Step 11.

STEP 11. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 22 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0118 set?

- **YES :** Retry the troubleshooting.
- NO: The inspection is complete.

DTC P0122: Throttle Position Sensor (main) Circuit Low Input

If DTC P0122 has been set, TCL related DTC U1120 is also set. After P0122 has been diagnosed, don't forget to erase DTC U1120.

AK403681

CIRCUIT OPERATION

 A 5-volt power supply is applied on the throttle position sensor (main) power terminal (terminal No. 5) from the ECM <M/T> or the PCM <A/T> (terminal No. 94).

The ground terminal (terminal No. 3) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 95).

TECHNICAL DESCRIPTION

- The throttle position sensor (main) outputs voltage which corresponds to the throttle valve opening angle.
- The ECM <M/T> or the PCM <A/T> checks whether the voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Throttle position sensor (main) output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302016

Check Condition

• Ignition switch is "ON" position.

Judgement Criterion

• Throttle position sensor (main) output voltage should be 0.35 volt or less for 0.5 second.

OBD-II DRIVE CYCLE PATTERN

None.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Throttle position sensor failed.
- Open or shorted throttle position sensor (main) circuit, harness damage, or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991658: Test Harness

STEP 1. Using scan tool MB991958, check data list item 13: Throttle Position Sensor (main).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Detach the intake air hose at the throttle body.
- (4) Disconnect the connector of the throttle position sensor.
- (5) Use test harness special tool (MB991658) to connect only terminals No. 3, No. 4, No. 5, and No. 6.
- (6) Set scan tool MB991958 to the data reading mode for item 13, Throttle Position Sensor (main).
 - Output voltage should be between 0.3 and 0.7 volt when the throttle valve is fully closed with your finger.
 - Output voltage should be between 4.0 volts or more when the throttle valve is fully open with your finger.
- (7) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is the sensor operating properly?

YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to

Cope with Intermittent Malfunctions P.00-14.

NO : Go to Step 2.

STEP 2. Check harness connector B-06 at throttle position sensor for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 3.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB Revision	

- (1) Disconnect the connector B-06 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 5 and ground.Voltage should be between 4.9 and 5.1 volts.
- (4) Turn the ignition switch to the "LOCK"(OFF) position.
- Q: Is the measured voltage between 4.9 and 5.1 volts?
 - **YES :** Go to Step 7. **NO :** Go to Step 4.

STEP 4. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 5.
 - **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

TSB	Revision	
۲SB	Rovision	

STEP 5. Check for open circuit and short circuit to ground between throttle position sensor connector B-06 (terminal No. 5) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 94).

Q: Is the harness wire in good condition?

- YES : Go to Step 6.
- **NO :** Repair it. Then go to Step 11.

STEP 6. Using scan tool MB991958, check data list item 13: Throttle Position Sensor (main).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Detach the intake air hose at the throttle body.
- (4) Disconnect the connector of the throttle position sensor.
- (5) Use test harness special tool (MB991658) to connect only terminals No. 3, No. 4, No. 5, and No. 6.
- (6) Set scan tool MB991958 to the data reading mode for item 13, Throttle Position Sensor (main).
 - Output voltage should be between 0.3 and 0.7 volt when the throttle valve is fully closed with your finger.
 - Output voltage should be 4.0 volts or more when the throttle valve is fully open with your finger.
- (7) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
CONNECTOR: B-21 ECM <M/T> OR PCM <AT> AIR CLEANER B-21 (B) B-21 (B) CONNECTOR: CONNECTOR: COMPONENT SIDE AK500054AB

STEP 7. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 8.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 11.

STEP 8. Check for harness damage between throttle position sensor connector B-06 (terminal No. 5) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 94). Q: Is the harness wire in good condition?

- YES : Go to Step 9.
- **NO :** Repair it. Then go to Step 11.

STEP 9. Check for open circuit, short circuit to ground and harness damage between throttle position sensor connector B-06 (terminal No. 4) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 99). Q: Is the harness wire in good condition?

- YES: Go to Step 10.
- **NO :** Repair it. Then go to Step 11.

STEP10. Replace the throttle body assembly.

- (1) Replace the throttle body assembly.
- (2) Turn the ignition switch to the "ON" position.
- (3) After the DTC has been deleted, read the DTC again.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is DTC P0122 set?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 11.
- **NO :** The inspection is complete.

-	
TSB Revision	

STEP 11. Using scan tool MB991958, read the diagnostic trouble code (DTC).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) After the DTC has been deleted, read the DTC again.
- (4) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is DTC P0122 set?

- **YES :** Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0123: Throttle Position Sensor (main) Circuit High Input

A CAUTION If DTC P0123 has been set, TCL related DTC U1120 is also set. After P0123 has been diagnosed, don't forget to erase DTC U1120.

AK403681

TSB Revision	
--------------	--

CIRCUIT OPERATION

 A 5-volt power supply is applied on the throttle position sensor (main) power terminal (terminal No. 5) from the ECM <M/T> or the PCM <A/T> (terminal No. 94).

The ground terminal (terminal No. 3) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 95).

TECHNICAL DESCRIPTION

- The throttle position sensor (main) outputs voltage which corresponds to the throttle valve opening angle.
- The ECM <M/T> or the PCM <A/T> checks whether the voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

Throttle position sensor (main) output voltage is out of specified range.

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

• Not applicable

DTC SET CONDITIONS

Logic Flow Chart

AK302016

Check Condition

• Ignition switch is "ON" position.

Judgement Criterion

• Throttle position sensor (main) output voltage should be 4.8 volts or more for 0.5 second.

OBD-II DRIVE CYCLE PATTERN

None.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Throttle position sensor failed.
- Open throttle position sensor (main) circuit, harness damage or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A
- MB991658: Test Harness

STEP 1. Using scan tool MB991958, check data list item 13: Throttle Position Sensor (main).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Detach the intake air hose at the throttle body.
- (4) Disconnect the connector of the throttle position sensor.
- (5) Use test harness special tool (MB991658) to connect only terminals No. 3, No. 4, No. 5, and No. 6.
- (6) Set scan tool MB991958 to the data reading mode for item 13, Throttle Position Sensor (main).
 - Output voltage should be between 0.3 and 0.7 volt when the throttle valve is fully closed with your finger.
 - Output voltage should be 4.0 volts or more when the throttle valve is fully open with your finger.
- (7) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is the sensor operating properly?

YES : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to

Cope with Intermittent Malfunctions P.00-14.

NO: Go to Step 2.

STEP 2. Check harness connector B-06 at throttle position sensor for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 3.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 8.

TSB	Revision	

- STEP 3. Check the continuity at throttle position sensor harness side connector B-06.
- (1) Disconnect the connector B-06 and measure at the harness side.

(2) Measure the continuity between terminal No. 3 and groundShould be less than 2 ohms.

Q: Does continuity exist?

YES : Go to Step 7. **NO :** Go to Step 4.

STEP 4. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 5.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 8.

TSB	Revision	
-----	----------	--

STEP 5. Check for open circuit and harness damage between throttle position sensor connector B-06 (terminal No. 3) and ECM <M/T> or PCM <A/T> connector B-21 (terminal No. 95).

Q: Is the harness wire in good condition?

- YES : Go to Step 6.
- **NO :** Repair it. Then go to Step 8.

STEP 6. Using scan tool MB991958, check data list item 13: Throttle Position Sensor (main).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Detach the intake air hose at the throttle body.
- (4) Disconnect the connector of the throttle position sensor.
- (5) Use test harness special tool (MB991658) to connect only terminals No. 3, No. 4, No. 5, and No. 6.
- (6) Set scan tool MB991958 to the data reading mode for item 13, Throttle Position Sensor (main).
 - Output voltage should be between 0.3 and 0.7 volt when the throttle valve is fully closed with your finger.
 - Output voltage should be 4.0 volts or more when the throttle valve is fully open with your finger.
- (7) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is the sensor operating properly?

- **YES** : It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 8.

STEP 7. Replace the throttle body assembly.

- (1) Replace the throttle body assembly.
- (2) Turn the ignition switch to the "ON" position.
- (3) After the DTC has been deleted, read the DTC again.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is DTC P0123 set?

- **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 8.
- **NO :** The inspection is complete.

STEP 8. Using scan tool MB991958, read the diagnostic trouble code (DTC).

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK"(OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) After the DTC has been deleted, read the DTC again.
- (4) Turn the ignition switch to the "LOCK"(OFF) position.

Q: Is DTC P0123 set?

- **YES :** Retry the troubleshooting.
- **NO**: The inspection is complete.

DTC P0125: Insufficient Coolant Temperature for Closed Loop Fuel Control

ACAUTION If DTC P0125 has been set, TCL related DTC U1120 is also set. After P0125 has been diagnosed, don't forget to erase DTC U1120.

Engine Coolant Temperature Sensor Circuit

CIRCUIT OPERATION

- 5-volt voltage is applied to the engine coolant temperature sensor output terminal (terminal No. 1) from the ECM <M/T> or the PCM <A/T> (terminal No. 93) via the resistor in the ECM <M/T> or the PCM <A/T>. The ground terminal (terminal No. 2) is grounded with ECM <M/T> or PCM <A/T> (terminal No. 69).
- The engine coolant temperature sensor is a negative temperature coefficient type of resistor. It has the characteristic that when the engine coolant temperature rises the resistance decreases.
- The engine coolant temperature sensor output voltage increases when the resistance increases and decreases when the resistance decreases.

TECHNICAL DESCRIPTION

- The engine coolant temperature sensor converts the engine coolant temperature to a voltage and outputs it.
- The ECM <M/T> or the PCM <A/T> checks whether this voltage is within a specified range.

DESCRIPTIONS OF MONITOR METHODS

- Engine coolant temperature sensor output voltage drops from over 40° C (104° F) to under 40° C (104° F) and keeps under 40° C (104° F) for 5 minutes.
- Engine coolant temperature sensor output voltage does not reach close loop enable temperature within specified period when engine coolant temperature sensor output voltage at engine start is under 7° C (45° F).

MONITOR EXECUTION

Continuous

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

- Mass airflow sensor
- Engine coolant temperature sensor
- Intake air temperature sensor

DTC SET CONDITIONS <Range/Performance problem -drift>

Logic Flow Chart

AK302017

Check Conditions, Judgement Criteria

- Engine coolant temperature decreases from higher than 40° C (104° F) to lower than 40° C (104° F).
- Then the engine coolant temperature has continued to be 40° C (104° F) or lower for 5 minutes.

|--|

DTC SET CONDITIONS <Range/Performance problem –low input (Time to reach closed loop temperature)>

Logic Flow Chart

*: SEE DTC SET CONDITIONS-SET CONDITIONS, JUDGMENT CRITERIA

AK302018

Check Conditions, Judgement Criteria

- About 60 –300 seconds have passed for the engine coolant temperature to rise to about 7° C (45° F) after starting sequence was completed.
- However, time is not counted when fuel is shut off.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 9 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- Engine coolant temperature sensor failed.
- Harness damage in engine coolant temperature sensor circuit or connector damage.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

Required Special Tools:

- MB991958: Scan Tool (MUT-III Sub Assembly)
 - MB991824: V.C.I.
 - MB991827: USB Cable
 - MB991910: Main Harness A

STEP 1. Using scan tool MB991958, check data list item 6: Engine Coolant Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 6, Engine Coolant Temperature Sensor.
 - The engine coolant temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES**: It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- NO: Go to Step 2.

STEP 2. Measure the sensor output voltage at engine coolant temperature sensor connector B-106 by backprobing.

- (1) Do not disconnect the connector B-106.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground by backprobing.
 - When engine coolant temperature is $-20^\circ\,C$ (-4° F), voltage should be between 3.9 and 4.5 volts.
 - When engine coolant temperature is 0° C (32° F), voltage should be between 3.2 and 3.8 volts.
 - When engine coolant temperature is 20° C (68° F), voltage should be between 2.3 and 2.9 volts.
 - When engine coolant temperature is 40° C (104° F), voltage should be between 1.3 and 1.9 volts.
 - When engine coolant temperature is 60° C (140° F), voltage should be between 0.7 and 1.3 volts.
 - When engine coolant temperature is 80° C (176° F), voltage should be between 0.3 and 0.9 volt.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the measured voltage within the specified range?

- YES : Go to Step 3.
- NO: Go to Step 5.

STEP 3. Check harness connector B-106 at the engine coolant temperature sensor for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 4.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 14.

TSB Revision	
--------------	--

STEP 4. Using scan tool MB991958, check data list item 6: Engine Coolant Temperature Sensor.

To prevent damage to scan tool MB991958, always turn the ignition switch to the "LOCK" (OFF) position before connecting or disconnecting scan tool MB991958.

- (1) Connect scan tool MB991958 to the data link connector.
- (2) Turn the ignition switch to the "ON" position.
- (3) Set scan tool MB991958 to the data reading mode for item 6, Engine Coolant Temperature Sensor.
 - The engine coolant temperature and temperature shown with the scan tool should approximately match.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.

Q: Is the sensor operating properly?

- **YES :** It can be assumed that this malfunction is intermittent. Refer to GROUP 00, How to Use Troubleshooting/Inspection Service Points –How to Cope with Intermittent Malfunctions P.00-14.
- **NO :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 14.

STEP 5. Check harness connector B-106 at engine coolant temperature sensor for damage.

- Q: Is the harness connector in good condition?
 - YES : Go to Step 6.
 - **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 14.

TSB	Revision	

CONNECTOR:

COMPONENT SIDE

AK000234 AV

- (1) Disconnect the connector B-106 and measure at the harness side.
- (2) Turn the ignition switch to the "ON" position.

- (3) Measure the voltage between terminal No. 1 and ground.
 - Voltage should be between 4.5 and 4.9 volts.
- (4) Turn the ignition switch to the "LOCK" (OFF) position.
- Q: Is the measured voltage between 4.5 and 4.9 volts?
 - **YES**: Go to Step 8. **NO**: Go to Step 7.

STEP 7. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 14.
- **NO**: Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 14.

CONNECTOR: B-21
ECM <m t=""> OR PCM </m>
AIR CLEANER
B-21 (B)
95 (94 (93) (92 (91) (99) (98) (97) (96) (19) (10) (10) (10) (10) (10) (10) (10) (10) (10) (11) (10) (10) (13) (112 (11) (10) (10)
HARNESS CONNECTOR: COMPONENT SIDE
AK500054AB

TSB Revision

B-106 HARNESS

COMPONENT SIDE

CONNECTOR:

STEP 8. Check the continuity at engine coolant temperature sensor harness side connector B-106.

(1) Disconnect the connector B-106 and measure at the harness side.

- (2) Check for the continuity between terminal No. 2 and ground.
 Should be less than 2 ohms.
 - Q: Does continuity exist?
 - YES : Go to Step 11.
 - NO: Go to Step 9.

STEP 9. Check harness connector B-20 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 10.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 14.

AK000235 AT

STEP 10. Check for harness damage between engine coolant temperature sensor connector B-106 (terminal No. 2) and ECM <M/T> or PCM <A/T> connector B-20 (terminal No. 69).

- Q: Is the harness wire in good condition?
 - **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 14.
 - **NO :** Repair it. Then go to Step 14.

- STEP 11. Check the engine coolant temperature sensor.
- Disconnect the engine coolant temperature sensor connector B-106.
- (2) Remove the engine coolant temperature sensor.

(3) With the temperature sensing portion of engine coolant temperature sensor immersed in hot water, check resistance.

Standard value:

 $\begin{array}{l} 14-17 \ k\Omega \left[at \ -20^{\circ} C \ (-4^{\circ} F)\right] \\ 5.1-6.5 \ k\Omega \left[at \ 0^{\circ} C \ (32^{\circ} F)\right] \\ 2.1-2.7 \ k\Omega \left[at \ 20^{\circ} C \ (68^{\circ} F)\right] \\ 0.9-1.3 \ k\Omega \left[at \ 40^{\circ} C \ (104^{\circ} F)\right] \\ 0.48-0.68 \ k\Omega \left[at \ 60^{\circ} C \ (140^{\circ} F)\right] \\ 0.26-0.36 \ k\Omega \left[at \ 80^{\circ} C \ (176^{\circ} F)\right] \end{array}$

- (4) Apply 3M[™] AAD part number 8731 or equivalent on the screw section of the engine coolant temperature sensor.
- (5) Install the engine coolant temperature sensor, and tighten to the specified torque.

Tightening torque: 30 \pm 9 N \cdot m (22 \pm 7 ft-lb)

- Q: Is the measured resistance at the standard value?
 - YES : Go to Step 12.
 - **NO :** Replace the engine coolant temperature sensor. Then go to Step 14.

STEP 12. Check harness connector B-21 at ECM <M/T> or PCM <A/T> for damage.

Q: Is the harness connector in good condition?

- YES : Go to Step 13.
- **NO :** Repair or replace it. Refer to GROUP 00E, Harness Connector Inspection P.00E-2. Then go to Step 14.

- Q: Is the harness wire in good condition?
 - **YES**: Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 14.
 - **NO :** Repair it. Then go to Step 14.

STEP 14. Test the OBD-II drive cycle.

- Carry out a test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 9 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0125 set?

- **YES :** Retry the troubleshooting.
- **NO :** The inspection is complete.

DTC P0128: Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)

TECHNICAL DESCRIPTION

• The ECM <M/T> or the PCM <A/T> checks the time for the cooling water temperature to reach the judgement temperature.

DESCRIPTIONS OF MONITOR METHODS

Engine coolant temperature does not reach 77° C (171° F) within specified period after cold start.

MONITOR EXECUTION

Once per driving cycle

DTC SET CONDITIONS

Logic Flow Chart

MONITOR EXECUTION CONDITIONS (Other monitor and Sensor)

Other Monitor (There is no temporary DTC stored in memory for the item monitored below)

• Not applicable

Sensor (The sensor below is determined to be normal)

AK204044

- Mass airflow sensor
- Engine coolant temperature sensor
- Intake air temperature sensor

TSB Revision	

Check Conditions

- Engine coolant temperature is between -10° C (14° F) and 77° C (171° F) when the engine is started.
- The engine coolant temperature –intake air temperature is 5° C (9° F) or less when the engine is started.
- The intake air temperature when the engine is started –intake air temperature is 5° C (9° F) or less.
- The total time of the mass airflow sensor output whose state is below 10 g/sec within 600 seconds.

Judgement Criteria

 The time for the engine coolant temperature to rise to 77° C (171° F) takes longer than approximately 11 to 32 minutes.

OBD-II DRIVE CYCLE PATTERN

Refer to Diagnostic Function –OBD-II Drive Cycle – Pattern 10 P.13A-6.

TROUBLESHOOTING HINTS (The most likely causes for this code to be set are:)

- The thermostat is faulty.
- ECM failed. <M/T>
- PCM failed. <A/T>

DIAGNOSIS

STEP 1. Check the cooling system.

Refer to GROUP 14, Engine Cooling Diagnosis P.14-4.

Q: Is the cooling system normal?

- **YES :** Replace the ECM or the PCM. When the ECM or the PCM is replaced, register the encrypted code. Refer to GROUP 54A, Encrypted Code Registration Criteria Table P.54A-13. Then go to Step 2.
- **NO :** Repair it. Then go to Step 2.

STEP 2. Test the OBD-II drive cycle.

- Carry out test drive with the drive cycle pattern. Refer to Diagnostic Function –OBD-II Drive Cycle –Pattern 10 P.13A-6.
- (2) Check the diagnostic trouble code (DTC).

Q: Is DTC P0128 set?

- **YES** : Retry the troubleshooting.
- **NO**: The inspection is complete.

NEXT >>